On Reducing Both Shift and Capture Power for Scan-Based Testing

Jia LI, Qiang XU, Yu HU, Xiaowei LI

1

Introduction

Backgrounds

Proposed LSC-filling algorithm

Experimental Results

Problems of High Test Power

Related to elevated average power consumption shift power adds to the thermal load that must be transported away from the circuit under test (CUT). can cause structural damage to the silicon, bonding wires, or the package. Related to capture power **excessive** peak power dissipation kely to cause a large voltage drop erroneous data transfer in the test mode only (invalidate the testing process and lead to yield loss).

Differences between shift and capture power

* Source:

- Shift power: logic value differences between adjacent bits in test vectors
- Capture power: logic value differences in each scan cell before and after the capture cycle

***** Optimization goal:

- Shift power: reduce it as much as possible
- Capture power: keep it under a safe peak power limit

***** Basic idea of the proposed *LSC-filling*:

- Use as few as possible X-bits to keep the capture power under the peak power limit —*LC-filling*
- Use the remaining X-bits to reduce the shift power —LS-filling

2

Introduction

Backgrounds

Proposed LSC-filling algorithm

Experimental Results

Shift and capture power consumption during scan tests

Prior works on low power testing

 DFT (design-for-testability)-based solutions (high efficiency and overhead)

- Scan chain manipulation (shift)
- Circuit modification (shift, capture)

Software-based solutions

- (no hardware overhead, limited efficiency)
 - Low-power ATPG (shift, capture)
 - X-filling (shift, capture)

 Test cubes may contain as much as 95-98%
 X bits (can be filled freely without affecting the fault coverage)

***** X-filling for shift power reduction

- Reduce transitions in test vectors
- *** X-filling for capture power reduction**
 - Reduce Hamming distances between the test stimuli and responses in every scan cell

Different optimizing approach, limited X bits
 —tradeoff solution needed

LC-filling for capture power reduction

* Impact of filling one X bit X_j of the *i*th test stimuli vector with logic value v('1' / '0')on transitions of scan cells:

 $T_{capture}(i, j, v) = \sum_{k \in f(v)} R_{i,k} \oplus S_{i,k} - \sum_{k \in f(v)} \overline{R_{i,k}} \oplus S_{i,k}$ $* T_{capture} \downarrow, \text{ capture transitions in scan cells } \downarrow$ $* \text{ Therefore, X bits with lower } T_{capture} \text{ are filled earlier to reduce capture power faster.}$

LSC-filling for shift and capture power reduction

An example

$$T_{capture}(i,2,1) = -3;$$

 $T_{capture}(i,2,0) = 3;$
 $T_{capture}(i,4,1) = 0;$
 $T_{capture}(i,4,0) = -1$

4

Introduction

Backgrounds

Proposed LSC-filling algorithm

Experimental Results

Experimental results for *LC***-filling**

Circuits	# of Scan Cells	# of Patterns	LCP[16]	LC	reduction
s1196	18	139	1	1	0
s1238	18	152	1	1	0
s5378	179	111	26	26	0
s9234	211	159	26	19	26.92%
s13207	638	236	37	25	32.43%
s15850	534	126	31	22	29.03%
s38417	1636	99	185	136	26.49%
s38584	1426	136	152	130	14.47%

[16] X. Wen, et al., "Low-capture-power test generation for scan-based at-speed testing," *Proc. IEEE International Test Conference (ITC)*, 2005, pp. 1019-1028.

Growth of consistent and inconsistent bit pairs

Consistent bit pairs

Inconsistent bit pairs

LC-filling can reduce capture power more faster

Experimental results for LSC-filling

Circuits	Ori.Vio.	Adjacent fill				LC-filling			LSC-filling				
		Ave. Shift	Ave. Cap.	Max. Cap.	# of Vio.	Ave. Shift	Ave. Cap.	Max. Cap.	# of Vio.	Ave. Shift	Ave. Cap.	Max. Cap.	# of Vio.
s1196	2	69	9	14	132	134	1	8	2	117	3	8	2
s1238	4	70	9	14	147	135	1	7	4	118	3	7	4
s5378	10	5976	87	119	111	11337	26	93	15	9761	51	93	15
s9234	0	13537	75	104	126	19660	19	59	0	14924	60	62	0
s13207	0	92235	214	289	178	147895	25	184	0	84035	168	190	0
s15850	0	63975	135	236	25	69734	22	127	0	58481	125	159	0
s38417	0	391913	334	541	7	677308	136	350	0	391989	330	489	0
s38584	0	489613	375	700	7	795848	130	487	1	492169	365	487	1

5

Introduction

Backgrounds

Proposed LSC-filling algorithm

Experimental Results

Conclusion

Can both guarantee peak power safety and achieve lower shift power

Thank you!

