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Overview

ReSP: Reflective Simulation Platform

A Virtual Platform for Hardware/Software codesign

Provides the speed of C++, the modeling facilities of SystemC
and the reflective and scripting capabilities of Python

Reflection allows a non-intrusive visibility on all the platform
elements

Advantages of the Approach

1 easy integration of external IPs and models

2 fine grain control of system-level simulation

3 effortless development of tools for system analysis and design
space exploration
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Virtual Platforms

Definition

Virtual Platform: a system level model that represents the real
system behavior

operates at the level of processor instructions, memory
accesses, and data packet transfers, as opposed to RTL

used in system-level design (ESL) for application functional
and performance analysis

Enables Hardware/Software codesign

Improves reuse of models during ESL design

3 / 16



Virtual Platforms

Definition

Virtual Platform: a system level model that represents the real
system behavior

operates at the level of processor instructions, memory
accesses, and data packet transfers, as opposed to RTL

used in system-level design (ESL) for application functional
and performance analysis

Enables Hardware/Software codesign

Improves reuse of models during ESL design

3 / 16



Virtual Platforms

Definition

Virtual Platform: a system level model that represents the real
system behavior

operates at the level of processor instructions, memory
accesses, and data packet transfers, as opposed to RTL

used in system-level design (ESL) for application functional
and performance analysis

Enables Hardware/Software codesign

Improves reuse of models during ESL design

3 / 16



Related Work

StepNP: A System–Level Exploration Platform for Network
Processors (Paulin at al., 2000):

First widespread SystemC platform
Require special wrappers around the component models
Access to simulation via SIDL, a custom interface definition
language

Exploiting TLM and object introspection for system-level simulation
(Beltrame at al., 2005): introduces the concept of introspection

Intrusive approach, requiring manual component modifications
Based on StepNP

Embed scripting inside SystemC (Vennin at al., 2006): proposes
integration among SystemC and Python

Python is used to embed scripting inside SystemC modules, but
requires modifications to the SystemC kernel
reduces code size, at the expense of speed reduction (10x reduction)
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ReSP: Simulation Core

Based on the OSCI SystemC TLM library

Used for keeping simulation time
Used for low level communication
Python wrappers have been automaticaly created

Provides a simulation controller

Extends SystemC with asynchronous control
Keeps basic statistics about the simulation
Instantiates and connects the available architectural
components

Interacts with the user through one or more
Human Computer Interfaces

E.g. An extended Python console and a socket interface
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ReSP: Overall Structure
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ReSP: Tools

debugger: Remote Stub for GNU/GDB

uses GDB’s Serial Remote Interface
it defines custom commands to control the flow of time

profiler: produces statistics on the executed software

no instrumentation in the software

fault injector: simulates the system behaviour in presence of
faults

follows the SoftWare-Implemented Hardware Fault Injection
approach

More tools are in the making, e.g. power analyzer
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ReSP: Component Models

Easy Intergration of Any SystemC Module

Thanks to the automatic wrapper generation

Favors IP reusability

The following hardware component models are part of ReSP:

1 processors cores: ARM7TDMI, PowerPC 405, Leon2, MIPS
and Nios2

written using the ArchC Architectural Description Language

2 interconnections: arbitrated bus

3 memories: simple memories, Leon3 L1 cache, coherent
directory based caches

4 miscellaneous: timer and interrupt controller of the ARM PID
board, PC16x5x UART model
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ReSP: Wrapper Generation

C++
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Analysis of Reflection Overhead II
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Using ReSP for Fault Analysis
Background

Reflective capabilities are used for implementing fault injection
facilities

Single Event Upsets are simulated by modifying the models’
internal state
Follows the SoftWare-Implemented Hardware Fault Injection
approach (SWIHFI)
No code instrumentation is required

Related Work:

Classical approaches pursue fault injection by means of code
instrumentation
Only a few works have exploited reflective programming but
they do not consider SystemC hardware models
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Using ReSP for Fault Analysis
Hardened Code Example

Original code Modified Code

a = 3; a0 = 3;
a1 = 3;
if (a0 != a1)
error();
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Using ReSP for Fault Analysis
Results

Fault injection campaign carried out by injecting more than
10000 faults in a Leon2 processor

Experimental results:

Error
Application Register Faults No Error HW Detected SW Detected Not detected

Reg. Bank 2000 1787 51 152 10
ELPF PC Reg. 1000 775 12 207 6

Other Regs 600 591 0 9 0

Reg. Bank 2000 1742 85 154 19
FIR PC Reg. 1000 663 93 235 9

Other Regs 600 571 0 27 2

Reg. Bank 2000 1540 185 271 4
Kalman PC Reg. 1000 591 62 346 1

Other Regs 600 593 0 7 0

TOTAL 10800 8853 488 1408 51

The results are coherent to what presented in Combined software
and hardware techniques for the design of reliable IP
processors, Rebaudengo et Al.
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Conclusions: Future Work

Support for the TLM 2.0 Draft 2 standard

Currently Draft 1 is used
We expect significant improvements in simulation speed

Callback facilities

The status of the models is monitored
Actions are taken in correspondence of particular events

Design Space Exploration algorithms

Necessary for tuning complex MP-SoC
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Conclusions: Wrap-Up

1 Virtual Platform targeted to Multi-Processor Systems-On-Chip

2 Based on Python and SystemC with automatic wrapper
generation

Python augments ReSP with Reflective Capabilities
Reflection allows a non-intrusive visibility on all the simulated
elements

3 No significant overhead due to Python

4 Fine grain control of the simulation

5 Fault Injection case study demonstates the usefulness of the
technology
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Thank You

Any Questions?

For more details: http://www.resp-sim.org

http://www.resp-sim.org
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Experimental Session - I
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We will use this architecture for software debugging



Experimental Session - II

proc1 = arm7.arm7(’proc1’)

mem = SimpleMemory32.SimpleMemory32(’mem’, 0x800000)

bus = pv_router32.pv_router32(’SimpleBus’, 2) #2 masters

manager.connectPortsForce(proc1,

proc1.DATA_MEM_port.memory_port, bus, bus.target_port[0])

manager.connectPortsForce(proc1,

proc1.PROG_MEM_port.memory_port, bus, bus.target_port[0])

manager.connectPortsForce(proc2,

proc2.DATA_MEM_port.memory_port, bus, bus.target_port[1])

manager.connectPortsForce(proc2,

proc2.PROG_MEM_port.memory_port, bus, bus.target_port[1])

manager.connectPortsForce(bus, bus.initiator_port, mem, mem.memPort)

bus.addBinding("mem.mem_SimpleMemPort", 0x0, 0x800000)



Experimental Session - II

parser = Parser.Parser(’exampleApp.elf’)

proc1.init(0, parser.getProgStart(),

parser.getDataStart(), parser.getProgDim())

proc2.init(1, parser.getProgStart(),

parser.getDataStart(), parser.getProgDim())

mem.loadApplication(parser.getProgData(),

parser.getDataStart(), parser.getProgDim())

inter1 = GDBProcStub32.arm7tdmiStub(proc1)

stub1 = GDBStub32.GDBStub32(inter1, 1500)

proc1.setGDBStub(stub1)

inter2 = GDBProcStub32.arm7tdmiStub(proc2)

stub2 = GDBStub32.GDBStub32(inter2, 1501)

proc2.setGDBStub(stub2)



Experimental Session - III



Experimental Session - IV

Connecting the debugger:

GNU gdb 6.7.1

..........

(gdb) target remote localhost:1500

Examining and modifying the components’ status:

>>> hex(proc1.RB.read(14))

0xf200

>>> proc1.acp_pc.write(0x200)

>>> proc1.totalCycles

1500
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