
ReSP: A Non-Intrusive Transaction-Level
Reflective MPSoC Simulation Platform for

Design Space Exploration

G. Beltrame† C. Bolchini§ L. Fossati§ A. Miele§ D. Sciuto§

†European Space Agency §Politecnico di Milano
Microelectronics Section Dipartimento di Elettronica e Informazione

January 17, 2008

mailto:Giovanni.Beltrame@esa.int
mailto:bolchini@elet.polimi.it
mailto:fossati@elet.polimi.it
mailto:miele@elet.polimi.it
mailto:sciuto@elet.polimi.it


Outline

1 Introduction

2 Reflective Simulation Platform

3 ReSP Performance

4 Application Scenario: Using ReSP for Fault Analysis

5 Conclusions

1 / 16



Outline

1 Introduction
Overview
A bit of history

2 Reflective Simulation Platform

3 ReSP Performance

4 Application Scenario: Using ReSP for Fault Analysis

5 Conclusions



Overview

ReSP: Reflective Simulation Platform

A Virtual Platform for Hardware/Software codesign

Provides the speed of C++, the modeling facilities of SystemC
and the reflective and scripting capabilities of Python

Reflection allows a non-intrusive visibility on all the platform
elements

Advantages of the Approach

1 easy integration of external IPs and models

2 fine grain control of system-level simulation

3 effortless development of tools for system analysis and design
space exploration

2 / 16



Overview

ReSP: Reflective Simulation Platform

A Virtual Platform for Hardware/Software codesign

Provides the speed of C++, the modeling facilities of SystemC
and the reflective and scripting capabilities of Python

Reflection allows a non-intrusive visibility on all the platform
elements

Advantages of the Approach

1 easy integration of external IPs and models

2 fine grain control of system-level simulation

3 effortless development of tools for system analysis and design
space exploration

2 / 16



Overview

ReSP: Reflective Simulation Platform

A Virtual Platform for Hardware/Software codesign

Provides the speed of C++, the modeling facilities of SystemC
and the reflective and scripting capabilities of Python

Reflection allows a non-intrusive visibility on all the platform
elements

Advantages of the Approach

1 easy integration of external IPs and models

2 fine grain control of system-level simulation

3 effortless development of tools for system analysis and design
space exploration

2 / 16



Virtual Platforms

Definition

Virtual Platform: a system level model that represents the real
system behavior

operates at the level of processor instructions, memory
accesses, and data packet transfers, as opposed to RTL

used in system-level design (ESL) for application functional
and performance analysis

Enables Hardware/Software codesign

Improves reuse of models during ESL design

3 / 16



Virtual Platforms

Definition

Virtual Platform: a system level model that represents the real
system behavior

operates at the level of processor instructions, memory
accesses, and data packet transfers, as opposed to RTL

used in system-level design (ESL) for application functional
and performance analysis

Enables Hardware/Software codesign

Improves reuse of models during ESL design

3 / 16



Virtual Platforms

Definition

Virtual Platform: a system level model that represents the real
system behavior

operates at the level of processor instructions, memory
accesses, and data packet transfers, as opposed to RTL

used in system-level design (ESL) for application functional
and performance analysis

Enables Hardware/Software codesign

Improves reuse of models during ESL design

3 / 16



Related Work

StepNP: A System–Level Exploration Platform for Network
Processors (Paulin at al., 2000):

First widespread SystemC platform
Require special wrappers around the component models
Access to simulation via SIDL, a custom interface definition
language

Exploiting TLM and object introspection for system-level simulation
(Beltrame at al., 2005): introduces the concept of introspection

Intrusive approach, requiring manual component modifications
Based on StepNP

Embed scripting inside SystemC (Vennin at al., 2006): proposes
integration among SystemC and Python

Python is used to embed scripting inside SystemC modules, but
requires modifications to the SystemC kernel
reduces code size, at the expense of speed reduction (10x reduction)

4 / 16



Related Work

StepNP: A System–Level Exploration Platform for Network
Processors (Paulin at al., 2000):

First widespread SystemC platform
Require special wrappers around the component models
Access to simulation via SIDL, a custom interface definition
language

Exploiting TLM and object introspection for system-level simulation
(Beltrame at al., 2005): introduces the concept of introspection

Intrusive approach, requiring manual component modifications
Based on StepNP

Embed scripting inside SystemC (Vennin at al., 2006): proposes
integration among SystemC and Python

Python is used to embed scripting inside SystemC modules, but
requires modifications to the SystemC kernel
reduces code size, at the expense of speed reduction (10x reduction)

4 / 16



Related Work

StepNP: A System–Level Exploration Platform for Network
Processors (Paulin at al., 2000):

First widespread SystemC platform
Require special wrappers around the component models
Access to simulation via SIDL, a custom interface definition
language

Exploiting TLM and object introspection for system-level simulation
(Beltrame at al., 2005): introduces the concept of introspection

Intrusive approach, requiring manual component modifications
Based on StepNP

Embed scripting inside SystemC (Vennin at al., 2006): proposes
integration among SystemC and Python

Python is used to embed scripting inside SystemC modules, but
requires modifications to the SystemC kernel
reduces code size, at the expense of speed reduction (10x reduction)

4 / 16



Outline

1 Introduction

2 Reflective Simulation Platform
Simulation Core
Overall Structure
Tools
Component Models
Wrapper Generation

3 ReSP Performance

4 Application Scenario: Using ReSP for Fault Analysis

5 Conclusions



ReSP: Simulation Core

Based on the OSCI SystemC TLM library

Used for keeping simulation time
Used for low level communication
Python wrappers have been automaticaly created

Provides a simulation controller

Extends SystemC with asynchronous control
Keeps basic statistics about the simulation
Instantiates and connects the available architectural
components

Interacts with the user through one or more
Human Computer Interfaces

E.g. An extended Python console and a socket interface

5 / 16



ReSP: Simulation Core

Based on the OSCI SystemC TLM library

Used for keeping simulation time
Used for low level communication
Python wrappers have been automaticaly created

Provides a simulation controller

Extends SystemC with asynchronous control
Keeps basic statistics about the simulation
Instantiates and connects the available architectural
components

Interacts with the user through one or more
Human Computer Interfaces

E.g. An extended Python console and a socket interface

5 / 16



ReSP: Simulation Core

Based on the OSCI SystemC TLM library

Used for keeping simulation time
Used for low level communication
Python wrappers have been automaticaly created

Provides a simulation controller

Extends SystemC with asynchronous control
Keeps basic statistics about the simulation
Instantiates and connects the available architectural
components

Interacts with the user through one or more
Human Computer Interfaces

E.g. An extended Python console and a socket interface

5 / 16



ReSP: Overall Structure

SystemC
Kernel

Simulation
Controller

Human-Computer
Interface (HCI)

SystemC
IP

SystemC
IP

SystemC
IP

Wrapper 
Generation

Python
Wrapper

Python
Wrapper

Python
Wrapper

Registration

Start, stop, pause...

Simulation and 
timing control

Commands

Analysis
Tools

Access to Signals
and variabes

ReSP Core

Human-Computer
Interface (HCI)

ReSP IPs ReSP Tools

C++ Python Python/C++

6 / 16



ReSP: Tools

debugger: Remote Stub for GNU/GDB

uses GDB’s Serial Remote Interface
it defines custom commands to control the flow of time

profiler: produces statistics on the executed software

no instrumentation in the software

fault injector: simulates the system behaviour in presence of
faults

follows the SoftWare-Implemented Hardware Fault Injection
approach

More tools are in the making, e.g. power analyzer

7 / 16



ReSP: Component Models

Easy Intergration of Any SystemC Module

Thanks to the automatic wrapper generation

Favors IP reusability

The following hardware component models are part of ReSP:

1 processors cores: ARM7TDMI, PowerPC 405, Leon2, MIPS
and Nios2

written using the ArchC Architectural Description Language

2 interconnections: arbitrated bus

3 memories: simple memories, Leon3 L1 cache, coherent
directory based caches

4 miscellaneous: timer and interrupt controller of the ARM PID
board, PC16x5x UART model

8 / 16



ReSP: Component Models

Easy Intergration of Any SystemC Module

Thanks to the automatic wrapper generation

Favors IP reusability

The following hardware component models are part of ReSP:

1 processors cores: ARM7TDMI, PowerPC 405, Leon2, MIPS
and Nios2

written using the ArchC Architectural Description Language

2 interconnections: arbitrated bus

3 memories: simple memories, Leon3 L1 cache, coherent
directory based caches

4 miscellaneous: timer and interrupt controller of the ARM PID
board, PC16x5x UART model

8 / 16



ReSP: Wrapper Generation

C++
Module

GCCXML

Compiled Output
(python extension module)

py++

C++
Compiler

Boost.Python

XML

Wrapper
C++ code

C++ code C++ library

C++

Normally Manually
Generated

9 / 16



ReSP: Wrapper Generation

C++
Module

GCCXML

Compiled Output
(python extension module)

py++

C++
Compiler

Boost.Python

XML

Wrapper
C++ code

C++ code C++ library

C++

9 / 16



ReSP: Wrapper Generation

C++
Module

GCCXML

Compiled Output
(python extension module)

py++

C++
Compiler

Boost.Python

XML

Wrapper
C++ code

C++ code C++ library

C++

9 / 16



ReSP: Wrapper Generation

C++
Module

GCCXML

Compiled Output
(python extension module)

py++

C++
Compiler

Boost.Python

XML

Wrapper
C++ code

C++ code C++ library

C++

9 / 16



ReSP: Wrapper Generation

C++
Module

GCCXML

Compiled Output
(python extension module)

py++

C++
Compiler

Boost.Python

XML

Wrapper
C++ code

C++ code C++ library

C++

9 / 16



ReSP: Wrapper Generation

C++
Module

GCCXML

Compiled Output
(python extension module)

py++

C++
Compiler

Boost.Python

XML

Wrapper
C++ code

C++ code C++ library

C++

9 / 16



Outline

1 Introduction

2 Reflective Simulation Platform

3 ReSP Performance

4 Application Scenario: Using ReSP for Fault Analysis

5 Conclusions



Analysis of Reflection Overhead I

Transactions Instructions
1500

1700

1900

2100

2300

K
T

ra
n

s
a

c
ti
o

n
s
/s

SystemC SystemC+ReSP

1500

1850

2200

2550

2900

K
In

s
tr

u
c
ti
o

n
s
/s

10 / 16



Analysis of Reflection Overhead II

Transactions Processors
0.95

0.97

0.99

1.01

S
p

e
e

d
U

p
 [

R
e

S
P

/S
y
s
te

m
C

]

1.007030 1.010020

11 / 16



Outline

1 Introduction

2 Reflective Simulation Platform

3 ReSP Performance

4 Application Scenario: Using ReSP for Fault Analysis
Background
Hardened Code Example
Results

5 Conclusions



Using ReSP for Fault Analysis
Background

Reflective capabilities are used for implementing fault injection
facilities

Single Event Upsets are simulated by modifying the models’
internal state
Follows the SoftWare-Implemented Hardware Fault Injection
approach (SWIHFI)
No code instrumentation is required

Related Work:

Classical approaches pursue fault injection by means of code
instrumentation
Only a few works have exploited reflective programming but
they do not consider SystemC hardware models

12 / 16



Using ReSP for Fault Analysis
Background

Reflective capabilities are used for implementing fault injection
facilities

Single Event Upsets are simulated by modifying the models’
internal state
Follows the SoftWare-Implemented Hardware Fault Injection
approach (SWIHFI)
No code instrumentation is required

Related Work:

Classical approaches pursue fault injection by means of code
instrumentation
Only a few works have exploited reflective programming but
they do not consider SystemC hardware models

12 / 16



Using ReSP for Fault Analysis
Hardened Code Example

Original code Modified Code

a = 3; a0 = 3;
a1 = 3;
if (a0 != a1)
error();

13 / 16



Using ReSP for Fault Analysis
Results

Fault injection campaign carried out by injecting more than
10000 faults in a Leon2 processor

Experimental results:

Error
Application Register Faults No Error HW Detected SW Detected Not detected

Reg. Bank 2000 1787 51 152 10
ELPF PC Reg. 1000 775 12 207 6

Other Regs 600 591 0 9 0

Reg. Bank 2000 1742 85 154 19
FIR PC Reg. 1000 663 93 235 9

Other Regs 600 571 0 27 2

Reg. Bank 2000 1540 185 271 4
Kalman PC Reg. 1000 591 62 346 1

Other Regs 600 593 0 7 0

TOTAL 10800 8853 488 1408 51

The results are coherent to what presented in Combined software
and hardware techniques for the design of reliable IP
processors, Rebaudengo et Al.

14 / 16



Using ReSP for Fault Analysis
Results

Fault injection campaign carried out by injecting more than
10000 faults in a Leon2 processor

Experimental results:

Error
Application Register Faults No Error HW Detected SW Detected Not detected

Reg. Bank 2000 1787 51 152 10
ELPF PC Reg. 1000 775 12 207 6

Other Regs 600 591 0 9 0

Reg. Bank 2000 1742 85 154 19
FIR PC Reg. 1000 663 93 235 9

Other Regs 600 571 0 27 2

Reg. Bank 2000 1540 185 271 4
Kalman PC Reg. 1000 591 62 346 1

Other Regs 600 593 0 7 0

TOTAL 10800 8853 488 1408 51

The results are coherent to what presented in Combined software
and hardware techniques for the design of reliable IP
processors, Rebaudengo et Al.

14 / 16



Outline

1 Introduction

2 Reflective Simulation Platform

3 ReSP Performance

4 Application Scenario: Using ReSP for Fault Analysis

5 Conclusions
Future Work
Wrap-Up



Conclusions: Future Work

Support for the TLM 2.0 Draft 2 standard

Currently Draft 1 is used
We expect significant improvements in simulation speed

Callback facilities

The status of the models is monitored
Actions are taken in correspondence of particular events

Design Space Exploration algorithms

Necessary for tuning complex MP-SoC

15 / 16



Conclusions: Future Work

Support for the TLM 2.0 Draft 2 standard

Currently Draft 1 is used
We expect significant improvements in simulation speed

Callback facilities

The status of the models is monitored
Actions are taken in correspondence of particular events

Design Space Exploration algorithms

Necessary for tuning complex MP-SoC

15 / 16



Conclusions: Future Work

Support for the TLM 2.0 Draft 2 standard

Currently Draft 1 is used
We expect significant improvements in simulation speed

Callback facilities

The status of the models is monitored
Actions are taken in correspondence of particular events

Design Space Exploration algorithms

Necessary for tuning complex MP-SoC

15 / 16



Conclusions: Wrap-Up

1 Virtual Platform targeted to Multi-Processor Systems-On-Chip

2 Based on Python and SystemC with automatic wrapper
generation

Python augments ReSP with Reflective Capabilities
Reflection allows a non-intrusive visibility on all the simulated
elements

3 No significant overhead due to Python

4 Fine grain control of the simulation

5 Fault Injection case study demonstates the usefulness of the
technology

16 / 16



Conclusions: Wrap-Up

1 Virtual Platform targeted to Multi-Processor Systems-On-Chip

2 Based on Python and SystemC with automatic wrapper
generation

Python augments ReSP with Reflective Capabilities
Reflection allows a non-intrusive visibility on all the simulated
elements

3 No significant overhead due to Python

4 Fine grain control of the simulation

5 Fault Injection case study demonstates the usefulness of the
technology

16 / 16



Conclusions: Wrap-Up

1 Virtual Platform targeted to Multi-Processor Systems-On-Chip

2 Based on Python and SystemC with automatic wrapper
generation

Python augments ReSP with Reflective Capabilities
Reflection allows a non-intrusive visibility on all the simulated
elements

3 No significant overhead due to Python

4 Fine grain control of the simulation

5 Fault Injection case study demonstates the usefulness of the
technology

16 / 16



Conclusions: Wrap-Up

1 Virtual Platform targeted to Multi-Processor Systems-On-Chip

2 Based on Python and SystemC with automatic wrapper
generation

Python augments ReSP with Reflective Capabilities
Reflection allows a non-intrusive visibility on all the simulated
elements

3 No significant overhead due to Python

4 Fine grain control of the simulation

5 Fault Injection case study demonstates the usefulness of the
technology

16 / 16



Conclusions: Wrap-Up

1 Virtual Platform targeted to Multi-Processor Systems-On-Chip

2 Based on Python and SystemC with automatic wrapper
generation

Python augments ReSP with Reflective Capabilities
Reflection allows a non-intrusive visibility on all the simulated
elements

3 No significant overhead due to Python

4 Fine grain control of the simulation

5 Fault Injection case study demonstates the usefulness of the
technology

16 / 16



Thank You

Any Questions?

For more details: http://www.resp-sim.org

http://www.resp-sim.org


Appendix



Experimental Session - I

Reg1

Reg2

PSR

Processor-1
Cache

block1

block2
.....

Sh
ar

ed
 b

us

PC......

word1

word2
word3

word4

word5
.......

Memory

Reg1

Reg2

PSR

Cache

block1

block2
.....

PC......

Processor-2

Wrapper
Wrapper

Wrapper
Wrapper

Wrapper
Wrapper

We will use this architecture for software debugging



Experimental Session - II

proc1 = arm7.arm7(’proc1’)

mem = SimpleMemory32.SimpleMemory32(’mem’, 0x800000)

bus = pv_router32.pv_router32(’SimpleBus’, 2) #2 masters

manager.connectPortsForce(proc1,

proc1.DATA_MEM_port.memory_port, bus, bus.target_port[0])

manager.connectPortsForce(proc1,

proc1.PROG_MEM_port.memory_port, bus, bus.target_port[0])

manager.connectPortsForce(proc2,

proc2.DATA_MEM_port.memory_port, bus, bus.target_port[1])

manager.connectPortsForce(proc2,

proc2.PROG_MEM_port.memory_port, bus, bus.target_port[1])

manager.connectPortsForce(bus, bus.initiator_port, mem, mem.memPort)

bus.addBinding("mem.mem_SimpleMemPort", 0x0, 0x800000)



Experimental Session - II

parser = Parser.Parser(’exampleApp.elf’)

proc1.init(0, parser.getProgStart(),

parser.getDataStart(), parser.getProgDim())

proc2.init(1, parser.getProgStart(),

parser.getDataStart(), parser.getProgDim())

mem.loadApplication(parser.getProgData(),

parser.getDataStart(), parser.getProgDim())

inter1 = GDBProcStub32.arm7tdmiStub(proc1)

stub1 = GDBStub32.GDBStub32(inter1, 1500)

proc1.setGDBStub(stub1)

inter2 = GDBProcStub32.arm7tdmiStub(proc2)

stub2 = GDBStub32.GDBStub32(inter2, 1501)

proc2.setGDBStub(stub2)



Experimental Session - III



Experimental Session - IV

Connecting the debugger:

GNU gdb 6.7.1

..........

(gdb) target remote localhost:1500

Examining and modifying the components’ status:

>>> hex(proc1.RB.read(14))

0xf200

>>> proc1.acp_pc.write(0x200)

>>> proc1.totalCycles

1500


	Outline
	Introduction
	Overview
	A bit of history

	Reflective Simulation Platform
	Simulation Core
	Overall Structure
	Tools
	Component Models
	Wrapper Generation

	ReSP Performance
	Application Scenario: Using ReSP for Fault Analysis
	Background
	Hardened Code Example
	Results

	Conclusions
	Future Work
	Wrap-Up

	Thank You
	Appendix

