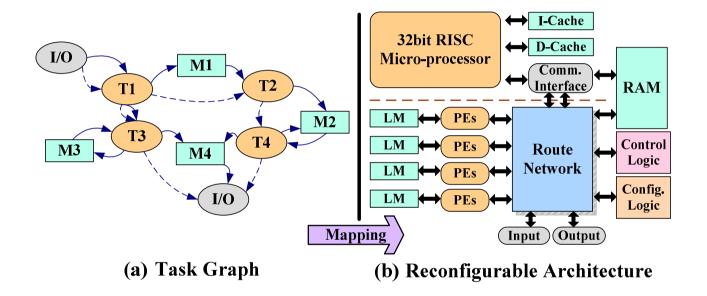
Collaborative Hardware/Software Partition of Coarse-Grained Reconfigurable System Using Evolutionary Ant Colony Optimization


Dawei Wang, Sikun Li, Yong Dou

College of Computer Science National University of Defense Technology

> January 21 - 24, 2008 COEX, Seoul, Korea

- Collaborative Partition Framework
- eACOGA Algorithm
- Automatic Partitioning Flow
- Conclusions

Target architecture for partitioning

Task Graph

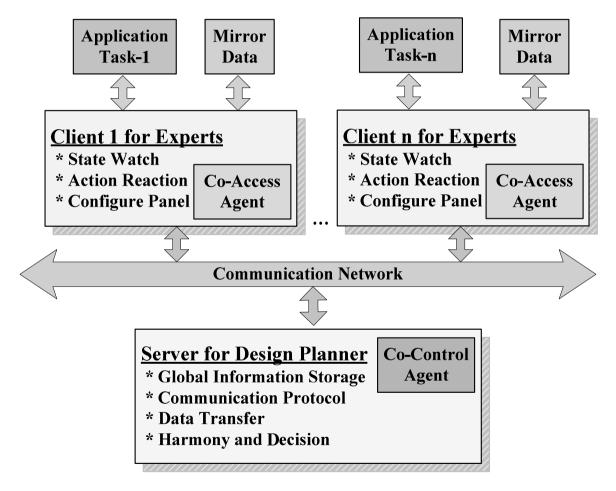
- ✤ Node task
- Edge channels or dependences

Reconfigurable Architecture

- RISC Microprocessor
- Reconfigurable PE Arrays

Problem formulation

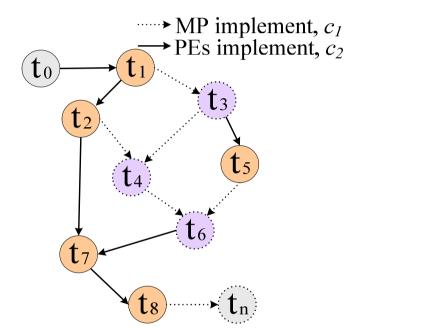
Definition 1 (TG) A task graph TG = (T, E, C, P) consists of a set of nodes T, a set of directed edges $E \subseteq (T \times T)$, configuration of nodes C, and a set of node ports P.


Definition 2 (rAG) A reconfigurable architecture graph rAG = (CP, CPE, CM, RN) consists of microprocessor computation resources CP, reconfigurable computation resources CPE, memories CM, and route networks RN. **Definition 3 (k way partition)** For given a set of modules M =

{m1,m2,...,mn}, a k way partition problem is to find a set of clusters P ={p1,p2,...,pk}, which meets:

$$p_{i} \subseteq M, \qquad 1 \le i \le k$$
$$\bigcup_{i=1}^{k} p_{i} = M$$
$$p_{i} \bigcap p_{j} = \Phi, \qquad 1 \le i, j \le k, i \ne j$$

- Collaborative Partition Framework
- eACOGA Algorithm
- Automatic Partitioning Flow
- Conclusions

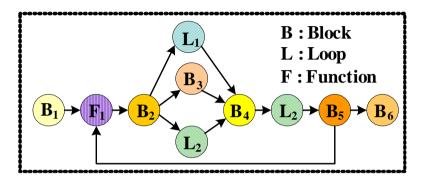

Collaborative Partition Framework

- Task protocol
- Data transfer protocol
- Parallel and cooperative control protocol
- Notification protocol

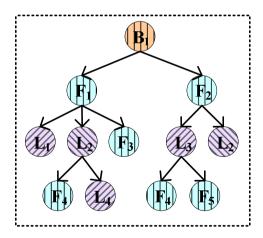
- Collaborative Partition Framework
- ACOGA Algorithm
- Automatic Partitioning Flow
- Conclusions

eACOGA algorithm

Strategy of Render to DAG


 $p_{ij}(k) = \frac{\tau_{ij}(k)^{\alpha} \eta_{j}(k)^{\beta}}{\sum_{l=1,2} \tau_{ij}(l)^{\alpha} \eta_{j}(l)^{\beta}}$

$$\eta_{j}(k) = 1/((w_{t} * time_{t}(k)) + (w_{a} * area_{j}(k)))$$


••••

Direct acyclic graph based bi-coloring model

Generate test DAGs

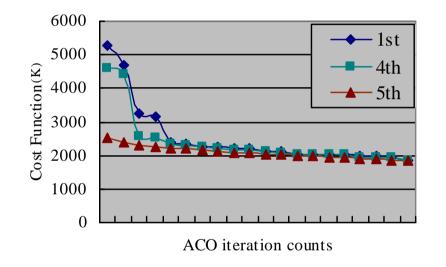
Three type of code block in DAG

Application Profiling

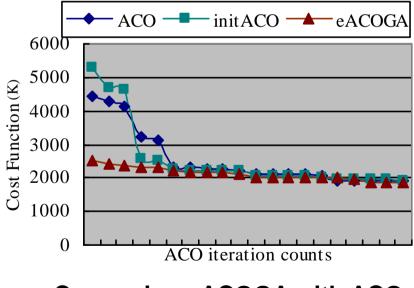
Basic Block
Critical Block
Task Flow Graph

Basic Block

- *Blocks
- Loops
- ✤Functions


Hierarchical view of critical block in DAG

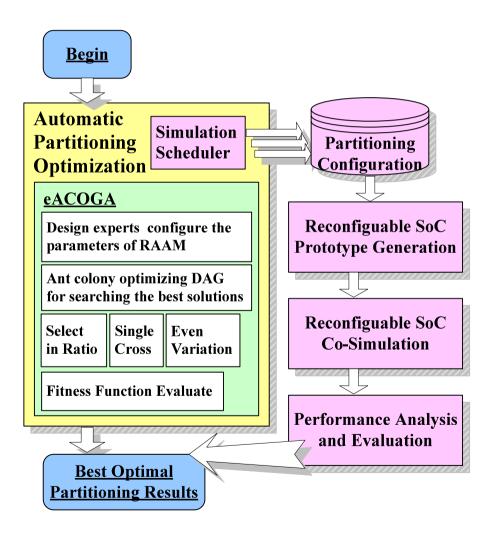
Performance of typical algorithms


Typical Algorithms	Execution Time		Deserves
	Estar (Mcycle)	LEAP (Kcycle)	Resources (<i>cPE mPE</i>)
512 point FFT	32.320	6.721	10c4m
1024 point FFT	72.353	12.802	10c4m
Edge Detection (320x240)	39.720	216.958	16c7m
Edge Detection (480x360)	87.898	474.205	16c7m
Median Filter (320x240)	1580.368	220.010	30c7m
Median Filter (480x360)	3590.500	478.792	30c7m
Matrix Multiply (64x64)	54.315	79.141	30c10m
Matrix Multiply (128x128)	2522.258	318.901	30c10m
FDCT	2433.389	2838.905	30c10m
IDCT	2437.417	2839.044	30c10m

10

Hw/Sw Partitioning with eACOGA

The evolution curve of eACOGA



Comparing eACOGA with ACO

11

- Collaborative Partition Framework
- eACOGA Algorithm
- Automatic Partitioning Flow
- Conclusions

Automatic partitioning flow

■ For each individual of generic population in eACOGA, the flow of partition and reconfigurable SoC co-simulation can run automatically. When some constraints cannot be met, experts can request to stop the simulation.

 Transaction level simulation in SystemC can describe various behaviors of reconfigurable SoC with faster speed and nicer accuracy. Architecture template enhances reuse of existing SoC design and achieves exploration speedup well.

- Collaborative Partition Framework
- eACOGA Algorithm
- Automatic Partitioning Flow
- Conclusions

Conclusions

- Collaborative hardware/software partition approach of coarse-grained reconfigurable system supports both human-computer and human-human interaction well.
- Automatic collaborative partition flow can not only reduce time of waiting for simulation, but also provide convenient collaborative framework for multi-field experts to work.
- The algorithm of eACOGA can evolve the main control parameters (α, β, ρ, Q) of ACO, so that it can find global best optimal solutions efficiently and rapidly.

Thank you !