Optimal Allocation and Placement of Thermal Sensors for Reconfigurable Systems and Its Practical Extension

Byunghyun Lee and Taewhan Kim Seoul National Univ.

1 Introduction

2

Thermal Sensor Allocation and Placement

 Aggressive technology scaling leads to higher power density

higher power density
 → higher die temperature

• Hotspots :

- Regions on chip that dissipate excessive heat
- Uneven activity distribution
- Slow lateral heat propagation in silicon

Effects of Die Temperature

Lifetime

 Exponential degradation

MTTF Vs Junction Temperature

Effects of Die Temperature

♦ Lifetime

- Exponential degradation
- Circuit delay
 - Linear increase

Effects of Die Temperature

♦Lifetime

- Exponential degradation
- Circuit delay
 - Linear increase
- Static power
 - Exponential increase

Temperature vs. Leakage

(Source: V. De, ISLPED 1999)

Detection of hotspots

- Power dissipation estimates not sufficient for thermal characterization
- Correlates with power density and physical interaction

Runtime thermal management

- Microprocessors
- Limited versions in FPGAs

FPGAs are popular programmable logic devices
 Commercial FPGAs are now available at 65nm

- High logic density → High power density → High temperature
- Maximum die temperature is 80°C w/o performance degradation
- Over 125°C with excessively parallel execution
- Pre-fabrication thermal sensor
 - Single on-chip sensor is a poor representation
 - Multiple sensors are inefficient
 - → Ring-oscillator based thermal sensor for FPGA

Thermal sensor(2)

Ring oscillator based thermal sensor

- Relation between transistor switching speed and temperature
- Lopez-Beudo et al. IEEE Design and Test'00
- Digital and more linear than diodes
- Dynamic configuration inserted, moved, eliminated

Thermal Sensor Allocation and Placement

Related work

- Grid-based placement Lopez-Beudo et al. FPGA'04
- Bisection-based placement R. Mukherjee et al. ICCAD'06

Motivation 1

(a) Grid-based

(b) bisection-based

(c) Optimal partition

Motivation 2

- Sensor candidate CLBs may not be available
- Need to be reconfigured to insert sensor
 - \rightarrow Change in hotspot map

SAPP (Sensor Allocation and Placement Problem)

- Given
 - a p× q array of configurable logic blocks
 - A set H of hotspots on the FPGA
 - A sensor with covering range I
- Find a set S of sensors and their locations on the FPGA
 - For each hi∈ H, there is sj∈ S that covers hi by its covered region
 - |S| is minimum

SEN-opt

- Using unate covering problem, solves SAPP optimally.
- Given a m*n matrix M, for which Mij is either 0 or 1
- Finding a minimum cardinality column subset C

SEN-opt example

					-										
		S1	S2	S3	S4	S5									
		S6	S 7	S8	S9	S10									
		S11	S12	h1	S13	S14									
		S15	S 16	S17	S18	S 19	- 1								
		S20	S21	S22	S23	S24									
					S25	S26	S 27	S28	S29	\$30	\$31				
S 32	S33	S34	S35	S36	S37	S38	\$39	S40	S41	S42	S43				
S44	S45	S46	S47	S48	S49	S50	h2	S51	h3	852	S53				
S54	855	h4	S56	857	S58	S59	S60	S61	S62	S63	S64				
S65	S66	S67	S 68	S69	S70	S71	S72	S73	S74	S75	S76				
	S77	S78	h5	S 79	S80										
	S81	S82	S 83	S84	S85					S91	S92	S 93	S 94	S95	
	S86	S87	S88	S89	S90					S96	S91	S 98	S 99	S100	
										S101	S102	h6	S103	S104	

(a)Hotspots and sensor candidates (covering range : *I*=5) (b) Constraint martix of (a)

Practical consideration

 Inserting thermal sensor, if resources for sensor are not enough

→ Need to move some existing logic

→Can affect the distribution of hotspot

3 steps (SEN-FLOW)

- 1st: Replacement and identification of new hotspot set
- 2nd : Extract uncovered hotspots

 3rd: Find minimum sensors covering the uncovered hotspots with the covering range *l*'

Practical consideration example(1)

(a) Optimal sensor location by SEN-opt

l'=max{d1,d2}=d1(b) Logic remapping after sensor insertion

Practical consideration example(2)

(c) Covering h1, h2 using bigger covered region

Experimental result(1)

Experiment environment

- PC with 2GHz AMD processor
- Tested on a MCNC benchmark
- Tested on random generated designs
- Thermal simulation tool : Hotspot
- Power estimation tool : Power model for VPR

Experimental result(2)

Evaluate our techniques in three-fold

- I. Checking the effectiveness of SEN-opt on a set of benchmarks over existing techniques
- II. Checking the efficiency of SEN-opt on a set of randomly generated designs
- III. Checking the effectiveness of SEN-FLOW on resolving the practical issue of the mapping conflict by the sensors and application logic

the effectiveness of SEN-opt (1)

Benchmarks	#hspot	ทเ	umber of se	red. Over	
		Grid	Bisect	SEN-opt	Grid/Bisect
APEX2	20	6	4	3	50%/25%
DIFFEQ	6	6	3	2	67%/33%
CLMA	30	25	8	6	76%/25%
S38417	46	20	12	9	55%/25%
S38584.1	12	16	7	6	63%/14%
ELLIPTIC	12	9	3	3	67%/0%
EX1010	8	16	3	2	88%/33%
FRISC	38	9	8	6	33%/25%
PDC	17	12	4	4	67%/0%
SPLA	27	12	6	5	58%/17%
Avg.					62.4%/19.7%

the effectiveness of SEN-opt (2)

CLBs	96 >	k 64	128 x 86			
#hspots	# of se	ensors	# of sensors			
	Bisect	SEN-opt	Bisect	SEN-opt		
30	16.5	15.8	19.0	18.4		
35	19.1	17.6	22.6	20.9		
40	19.8	18.1	24.2	22.8		
45	22.6	20.6	26.1	24.3		
50	23.3	19.8	28.3	25.7		
55	22.5	20.3	30.7	27.5		
60	25.7	21.9	32.8	29.8		
65	27.0	22.8	34.5	30.2		
70	27.6	23.4	35.5	31.2		
75	28.9	24.3	37.4	31.7		
Avg.	23.3	20.4	29.1	26.3		
Red.	de	12.4%		9.8%		

the effectiveness of SEN-FLOW

Benchmark	After SEN-	After rer	napping	After SEN-FLOW			
	opt #concor	#hspot	#hspot	#sensor	#sensor		
	#SENSOI	(COV.)	(uncov.)	(<i>l</i> =12)	(<i>I</i> >12)		
CLMA	6	10	7	3	3(I:20)		
S38584.1	6	11	7	3	3(I:22)		
S38417	9	17	8	7	2(I:20)		
EX1010+S PLA	7	9	1	6	1(l:18)		
FRISC+SP LA	8	43	8	5	3(l:28)		
FRISC+EX 1010	8	41	15	4	4(I:20)		
COMPACT	7	43	2	5	2(l:18)		

Conclusion

Proposing thermal sensor allocation and placement problem
 Proposing two solutions

 SEN-opt
 Solution for SAPP
 SEN-FLOW
 Practical consideration

Thank You

