

NBTI Induced Performance Degradation in Logic and Memory Circuits: How Effectively Can We Approach a Reliability Solution?

Kunhyuk Kang, Saakshi Gangwal, Sang Phill Park, and Kaushik Roy School of Electrical and Computer Engineering Purdue University

Purpose

- Temporal NBTI degradation of MOSFET is an essential design challenge in Nano-Scale Technology
- Various design techniques
- Comparison & Evaluation of different approaches for random logic circuits and memory arrays
- Establish a realistic, yet efficient circuit design solutions under NBTI

Outline

- Modeling NBTI
 - Device level model based on Reaction-Diffusion framework
 - Circuit compatible simulation model
- NBTI in Random Logic Circuits
 - Impact in circuit f_{MAX}
 - Reliability-Aware Design Techniques
- NBTI in Memory Array
 - Impact in READ & WRITE stability
 - Reliability-Aware Design Techniques
- Conclusion

Negative Bias Temperature Instability

- Generation of Interfacial trap (N_{IT}) generation at Si/SiO₂
- With time, V_T \uparrow , subthreshold slope (S) \uparrow , mobility \downarrow
- Drive current (I_{DS}) reduces and affects the PMOS speed
- Overall reduction in PMOS life

Reaction Diffusion Based Model*

*Chakravarthi et. al., IRPS '04; Varghese et. al. IEDM '05

Circuit Simulation Model

- NBTI degradation represented in voltage source
- ΔV_{tp} depends on input signal probability (S_p), time (t), temperature (T), and stress voltage (V_{DD})
- Compact circuit simulation model

Outline

- Modeling NBTI
 - Device level model based on Reaction-Diffusion framework
 - Circuit compatible simulation model
- NBTI in Random Logic Circuits
 - Impact in circuit f_{MAX}
 - Reliability-Aware Design Techniques
- NBTI in Memory Array
 - Impact in READ & WRITE stability
 - Reliability-Aware Design Techniques
- Conclusion

NBTI in Random Logic Circuits

*B. C. Paul et al., EDL'05

Solution #1: Optimal Sizing*

- Calculated over-design is required to guarantee a lifetime stability of the circuit
- LR sizing is used to optimize the circuit

Size the circuit considering the worst-case V_t degradation over the lifetime ⁹
 *B. C. Paul et al., DATE'06

Solution #2: Technology Mapping*

- NBTI is considered during technology mapping
- Sensitivity of different gates w.r.t NBTI is considered

*S. Kumar et al., DAC'07

Solution #3: Delay Guard-Banding

- Simple delay guard-banding at initial design phase
- Low-cost, low-complexity, ignore NBTI sensitivity
- May not be an optimal solution

Comparison Result

Circuits	# of gates	Nominal Design (um)	Area overhead @125C				Area overhead @75C			
			WC-Sizing	Opt-Sizing	Guardbanding	Synthesis	WC-Sizing	Opt-Sizing	Guardbanding	Synthesis
c432	184	225.7	8.59	6.13	7.98	4.25	5.35	4.03	4.57	1.14
c1908	466	537.2	13.79	9.17	10.21	10.38	7.62	5.72	5.70	4.40
c499	534	567.7	15.25	8.75	9.81	6.45	7.39	5.34	5.04	2.02
c2670	686	801.5	7.16	5.33	5.55	5.01	5.07	2.26	2.45	2.54
c3540	1134	1392.7	6.36	3.41	4.27	0.40	2.85	1.98	1.92	0.20
Average			10.23	6.56	7.56	5.30	5.66	3.87	3.94	2.06

*PTM 65nm, scaled LEDA library cells

- •WC-sizing >> GB > Opt-sizing > Synthesis
- Result from GB is comparable to other methods
- In low temp., the difference gets even lower
- GB can be an efficient yet effective solution

Outline

- Modeling NBTI
 - Device level model based on Reaction-Diffusion framework
 - Circuit compatible simulation model
- NBTI in Random Logic Circuits
 - Impact in circuit f_{MAX}
 - Reliability-Aware Design Techniques
- NBTI in Memory Array
 - Impact in READ & WRITE stability
 - Reliability-Aware Design Techniques
- Conclusion

NBTI in Memory Arrays

• *Mismatch between TRs* are critical in SRAM cell

Two sources of mismatches

- Spatial Source: Process Variation, RDF
- Temporal Source: NBTI in PMOS TR

• SNM, read & write stability, parametric yield 14

Degradation in Cell READ Stability

- Static Noise Margin (SNM) reduces with time under NBTI
 → ~10% in 3 years static stress
- NBTI becomes a critical issue in memory arrays

*K. Kang et al., ITC'07, **S. Kumar et al., ISQED'06

Solution #1: Periodic Cell-Flipping*

- Balance the signal probability on both side of the cell $\rightarrow S_L = S_R$
- Still incurs close to 10% degradation in SNM

Solution #2: Standby V_{DD} Scaling

- NBTI is a strong function of V_{DD}
- Lower V_{DD} during standby mode \rightarrow MIN V_{DD}
- Effective solution with low design effort

Solution #3: Sensing & Correction

- Sense reliability degradation → adaptive correction using circuit techniques
- *T. Kim et al., VLSI Circuit Symposium 2007
- ** K. Kang et al., Design Automation Conf. 2007
- Need to properly consider design overhead 18

Future of NBTI

- Increasing T_{ox} scaling $\rightarrow E_{ox}$
- High-k / metal gate transistor
- 3D device structure with increasing surface to volume ratio

NBTI will become an essential design issue in future technology generation

Conclusion

- NBTI is an emerging Reliability issue in future MOSFET technologies
- NBTI can severely impact the lifetime of various digital circuits
- Effective & realistic design solution for random logic circuits and memory arrays are proposed