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E Digital semiconductor trends

B Integration of more and more functions into a chip
B Gate density continues to increase (—32nm)
B Frequency saturation and power become issues
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n Processing architecture direction

B Our approach: to achieve high-performance by parallel
architecture utilizing high-gate density with support of
parallelizing compiler for high software productivity

Parallelism level Architecture
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function In task Multi-thread |
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task

Parallelizing Heterogeneous multi-core
compiler processor (HMCP)

Asymmetric Multi-core




E Power-aware HMCP architecture
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B A dynamically reconfigurable processor as an accelerator
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ﬂ Data transfer unit (DTU)

E Concurrent data transfer

CPU #m CPU#n
with CPU computation
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local memories src. : / \  dst. |
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E OSCAR parallelizing compiler

Improve effective performance, cost-performance
and productivity and reduce consumed power

B Multigrain parallelization

B Exploitation of parallelism from the whole program by use of
coarse-grain parallelism among loops and subroutines, near fine
grain parallelism among statements in addition to loop parallelism

B Data localization

E Automatic data distribution for distributed shared memory, cache
and local memory on multiprocessor systems

B Data transfer overlapping

B Data transfer overhead hiding by overlapping task execution and
data transfer using DMA or data pre-fetching

B Power reduction

F Reduction of consumed power by compiler control of frequency,
voltage and power shut down with hardware supports

*Optimally SCheduled Advanced multiprocessoR



a Compiling steps
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M Generation of coarse grain tasks

B Macro-tasks (MTSs)
¥ Block of pseudo assignments (BPA): Basic block (BB)
F Repetition block (RB) : loop
B Subroutine block (SB): subroutine
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H Sample macro-task graph (MTG)
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Scheduled-tasks execution
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H Compiler power saving scheme

B Power controlling in parallelized tasks

B Compiler control of frequency / voltage (F/V) and power shut
down by utilizing a parallelized task scheduling result

B Reduces power while maintaining parallelized performance
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m Evaluated HMCP architecture
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B Cycle-accurate simulator is
utilized

B CPU: SuperH (SH)
DRP: FE w. sub CPU

B 300 MHz @ 90-nm tech.

E Memory lantecy

B Local memory: 1-cycle
latency (local), 4-cycle
latency (remote)

I On-chip SM: 4-cycle latency

B Off-chip SM: 16-cycle
latency

B Wattch-based power model

I Parameters were
Introduced from RTL-level
power simulation on SH
processors



H Evaluated application; MP3 encoder

B MP3 Audio Encoding as firstly evaluated application targeting
car navigation systems as an example

I Encoding processed in each individual audio frame and inter-frame
parallelism exists

B 16 frames of 16-bit 44.1-KHz input and 128-kbps stream output

B Process flow of MP3 encoding B Profiling Result
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H Effect of FE

B 24 macro tasks assigned for FEs in MP3 encoder

Subband analysis
(subband 1 task)

Psycho-acoustic
analysis
(psycho Total)

MDCT
(mdct Total)

Quantization
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Performance evaluation
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@ Macro task trace (SHx2+DRPx2)

: : Time
Bit stream generation >
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@ Power control mode

Status of the FV power mode

B CPU: Avg. power 150 mW @ 300 MHz, 1.0 VV (FULL)

¥ FULL, MID, LOW, OFF supported
B FE: Avg. power 210 mW @ 300 MHz, 1.0 V (FULL)

B FULL, OFF supported

FULL MIDDLE LOW OFF
Clock 1 1/2 1/4 0
frequency | (300 MHz) | (150 MHz) | (75 MHz) | (Clock off)
Supply 1 0.87 0.71 0
voltage (1.0 V) (0.87 V) (0.71V) | (Power off)
Leakage 1 1 1 0
power (1.0 %) (1.0 %) (1.0 %) (No power)




a Power control effects by compiler

Energy consumption [J]
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H Macro task trace with power control

B Clock frequency of CPU#0 and #1 is lowered for bit-stream
generation tasks
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a Summary

E Power-efficient heterogeneous multi-core
architecture supported by OSCAR parallelizing
compiler was studied

B Various types of processor cores on a chip such as CPUs and
Flexible Engines as accelerators

B Unified hierarchical memory architecture throughout the PEs
controlled by software to improve performance, power
efficiency and programming/compiling efficiency

E Power control registers reducing power consumption

B Performance evaluation was performed using
MP3 audio encoder

B 24.5-folded speed-up in performance on 4 CPUs and 4 FEs
against seqguential execution on one CPU

E As much as 37.1% reduction in energy consumption was
achieved when the compiler power saving scheme was applied

Thank you for your attention!!



