Software-Cooperative Power-Efficient Heterogeneous Multi-core for Media Processing

Hiroaki Shikano^{*,**}, Masaki Ito^{*}, Kunio Uchiyama^{*}, Toshihiko Odaka^{*}, Akihiro Hayashi^{**}, Takeshi Masuura^{**}, Masayoshi Mase^{**}, Jun Shirako^{**}, Yasutaka Wada^{**}, Keiji Kimura^{**}, Hironori Kasahara^{**}

*Hitachi, Ltd. **Waseda University

ASP-DAC 2008

Contents

- **1** Introduction
- 2 Heterogeneous multi-core architecture
- **3** Parallelizing compiler
- **4** Performance evaluation
- 5 Summary

3 Digital semiconductor trends

Integration of more and more functions into a chip
Gate density continues to increase (~32nm)
Frequency saturation and power become issues

4 **Processing architecture direction**

Our approach: to achieve high-performance by parallel architecture utilizing high-gate density with support of parallelizing compiler for high software productivity

Power-aware HMCP architecture 5

processors CPUs + accelerators (ACC) Unified hierarchical memory architecture

- LDM: local data memory
- DSM: distributed shared memory
- LPM: local program memory
- CSM: centralized shared memory
- Programmable data transfer unit (DTU)
- Power control register (FVR)

6 Accelerator core; Flexible Engine(FE)

A dynamically reconfigurable processor as an accelerator

7 Data transfer unit (DTU)

- Concurrent data transfer with CPU computation
- Programmability by transfer commands on local memories
 - Put/get commands
 - Flag check /set commands

8 OSCAR parallelizing compiler

Improve effective performance, cost-performance and productivity and reduce consumed power

Multigrain parallelization

Exploitation of parallelism from the whole program by use of coarse-grain parallelism among loops and subroutines, near fine grain parallelism among statements in addition to loop parallelism

Data localization

Automatic data distribution for distributed shared memory, cache and local memory on multiprocessor systems

Data transfer overlapping

Data transfer overhead hiding by overlapping task execution and data transfer using DMA or data pre-fetching

Power reduction

Reduction of consumed power by compiler control of frequency, voltage and power shut down with hardware supports

*Optimally SCheduled Advanced multiprocessoR

9 Compiling steps

10 Generation of coarse grain tasks

Macro-tasks (MTs)

- Block of pseudo assignments (BPA): Basic block (BB)
- Repetition block (RB) : loop
- Subroutine block (SB): subroutine

11 Sample macro-task graph (MTG)

12 Scheduled-tasks execution

13 Compiler power saving scheme

Power controlling in parallelized tasks

- Compiler control of frequency / voltage (F/V) and power shut down by utilizing a parallelized task scheduling result
- Reduces power while maintaining parallelized performance

14 Evaluated HMCP architecture

- Cycle-accurate simulator is utilized
- CPU: SuperH (SH) DRP: FE w. sub CPU
 - **300** MHz @ 90-nm tech.
- Memory lantecy
 - Local memory: 1-cycle latency (local), 4-cycle latency (remote)
 - On-chip SM: 4-cycle latency
 - Off-chip SM: 16-cycle latency
 - Wattch-based power model
 - Parameters were introduced from RTL-level power simulation on SH processors

15 Evaluated application; MP3 encoder

- MP3 Audio Encoding as firstly evaluated application targeting car navigation systems as an example
 - Encoding processed in each individual audio frame and inter-frame parallelism exists
 - 16 frames of 16-bit 44.1-KHz input and 128-kbps stream output

24 macro tasks assigned for FEs in MP3 encoder

CPU/FE execution cycles per frame

17 Performance evaluation

18 Macro task trace (SHx2+DRPx2)

Filter, MDCT, psycho- Quantization for frame #0-15 acoustic analysis

19 Power control mode

Status of the FV power mode

CPU: Avg. power 150 mW @ 300 MHz, 1.0 V (FULL)

- FULL, MID, LOW, OFF supported
- FE: Avg. power 210 mW @ 300 MHz, 1.0 V (FULL)
 - FULL, OFF supported

	FULL	MIDDLE	LOW	OFF
Clock	1	1/2	1/4	0
frequency	(300 MHz)	(150 MHz)	(75 MHz)	(Clock off)
Supply	1	0.87	0.71	0
voltage	(1.0 V)	(0.87 V)	(0.71 V)	(Power off)
Leakage power	1	1	1	0
	(1.0 %)	(1.0 %)	(1.0 %)	(No power)

20 Power control effects by compiler

21 Macro task trace with power control

Clock frequency of CPU#0 and #1 is lowered for bit-stream generation tasks

Time

22 Summary

Power-efficient heterogeneous multi-core architecture supported by OSCAR parallelizing compiler was studied

- Various types of processor cores on a chip such as CPUs and Flexible Engines as accelerators
- Unified hierarchical memory architecture throughout the PEs controlled by software to improve performance, power efficiency and programming/compiling efficiency
- Power control registers reducing power consumption

Performance evaluation was performed using MP3 audio encoder

- 24.5-folded speed-up in performance on 4 CPUs and 4 FEs against sequential execution on one CPU
- As much as 37.1% reduction in energy consumption was achieved when the compiler power saving scheme was applied

Thank you for your attention!!