Experiences of Low Power Design Implementation and Verification

Shih-Hao Chen
Global Unichip Corp.
Hsinchu, Taiwan
Agenda

1. Introduction
2. Power Gating
3. Low Power Verification
4. Dynamic IR Prevention
5. Conclusion
Technology is Driven to Low Power

Force and Impact

- Application, cost, process technology driven
- Complexity, power density, leakage increase
- Trade-off: area, power, performance, reliability, cost, ...

Require battery power

- 45nm
- 65nm
- 90nm

Verification
Leakage
Design methodology
Power density
Component

Complexity
Power Optimization

Should be achieved from various fields

- Software, architecture, logical design, physical implementation, IP/library support, process technology, ...

Power Optimization

High

Opportunity

Low

MSV

DVFS

SRPG

Multi-VT opt.

Algorithm

Scheduling

Instruction opt.

Pipelining

Memory hierarchy

Operand isolation

Clock gating

FF clustering

Sizing, Clock mesh

Wire reduction

Power gating

Implementation

Modeling & Estimation

Verification

a*C*F

V^2

Leakage

Software Policy

System Architecture

Synthesis Logic Design

Physical Implementation

IP/Library Process

Algorithm

Scheduling

Instruction opt.

Pipelining

Memory hierarchy

Operand isolation

Clock gating

FF clustering

Sizing, Clock mesh

Wire reduction

Power gating

Back biasing

Gate-length opt.
Power Gating

- **Off-chip control**
 - Take long time to wake-up

- **On-chip control**
 - Switch-able pad implementation needs extra I/O space
 - Power switch implementation becomes more popular
MTCMOS Technique

- The most effective way to manage leakage
- Penalty
 - Incurs power by sleep transistors and have area penalty
 - Has performance degradation issue due to IR drop
 - Needs extra de-cap to reduce the power noise
Determine switch allocation, power-up sequence

- Subject to: area, power, ramp-up time and peak current

Power Switch Planning

- Power-up
- Saturation region
- Off

Steady-state
Linear region

Concurrence (fish-bone)
Mutation (domino)
One-by-one (daisy chain)

Trade-off between peak current & ramp-up time

Upper/lower bound of ramp-up time

Voltage

PMOS (Header)

Current (A)

Vgs=0

Ramp-up time

Peak

Current
Power Switch Assembly

- Partition/Cluster switch cells in banks
- Peak current limit (max concurrence)
- Wake-up time limit (max depth)
Effect of Power-up Sequence

2,400 switch cells partitioned in 20 banks, and assembled in the same configuration (Domino Fashion)

4 root position: BL, BR, TL, TR
Power Switch Optimization

- Sizing/Removal
- Reordering

- To reduce rush current and dynamic IR problems
Dynamic IR vs. Power-up Sequence

<table>
<thead>
<tr>
<th>Config</th>
<th>VDD</th>
<th>VSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>7%</td>
<td>6.5%</td>
</tr>
<tr>
<td>BR</td>
<td>6%</td>
<td>5.5%</td>
</tr>
<tr>
<td>TL</td>
<td>5.5%</td>
<td>5%</td>
</tr>
<tr>
<td>TR</td>
<td>5.5%</td>
<td>5.5%</td>
</tr>
</tbody>
</table>
Verification is a Key to Success

- Comprehensive low power verification
 - Design quality check
 - Electrical check, functional correctness, IR/EM analysis
 - Dynamic IR

Multi-depths Sleep Mode

- good decision?
- incomplete clock gating?
- missing isolation or shifter?
- incorrect power domain connection? power routing?
- incapable sleep control propagation?
- IR/EM analysis?
Dynamic IR Drop Affects Yield

- **Dynamic IR is critical at 90nm and below**
 - Timing variation becomes more voltage sensitive
 - Increasing the power grid width is not efficient enough

Source: TSMC

It's not only speed degradation problem, but also cause chip failure!
Scan Mode Dynamic IR is Critical

- Even worst in scan mode
 - Delay is more sensitive to IR drop as technology shrinking
 - Simulation-based approach is effort consuming
 - Analysis at early stage is critical

Static Analysis

VDD: 0% ~ 0.75%

VCD-based Analysis

VDD: 17.5% ~ 18.7%
Dynamic IR Analysis

- **Traditional flow is inefficient**
 - Effort consuming to grab VCD pattern and timing window
 - No enough space around hot spots (too late)
 - May worsen leakage and yield (inefficient de-cap insertion)

Gain ~1% dynamic IR saving, but pay ~200K de-cap cells.
Dynamic IR Failure Prediction

Flip-flop density rule
- Cell padding is applied during CTS and timing opt.
- Dynamic-IR is controlled while maintaining timing
- De-cap cell insertion becomes more efficient

VCD-based Analysis
Dynamic IR Prediction
Dynamic IR Prevention Flow

- **Preliminary planning**
 - Power grid
 - De-cap pre-insertion
 - Power switch configuration
 - Prediction, fixing

- **Power aware DFT**
 - Clock gating
 - Location-based grouping
 - Test clocks varying

- **Power switch opt.**
 - Sizing, removal, reordering
Conclusion

- **Power efficiency**
 - Compromise between different mechanisms
 - Require good decision, comprehensive verification

- **Power-gating is a promising leakage control**
 - Challenge of verification among various sleep modes
 - Configuration with dynamic IR consideration

- **Dynamic IR prevention flow improves yield**
 - Flip-flop density check achieves a good quality
 - Fixing becomes much easier without timing degradation
 - Dynamic-IR is controlled during CTS and timing opt.
Thanks for your attention.