
Efficient Mapping onto Coarse-Grained
Reconfigurable Architectures using

Graph Drawing based Algorithm

Jonghee Yoon, Aviral Shrivastava†, Sanghyun Park,
Minwook Ahn, Reiley Jeyapaul†, and Yunheung

Paek

SO&R Research Group

Seoul National University, Korea

†CML Laboratory

Arizona State University, USA

Outline

Coarse-Grained Reconfigurable Architectures
Issues on Application Mapping onto CGRAs
ILP(Integer Linear Programming) Formulation
Graph Drawing Algorithm

Split & Push
Matching-Cut

Split & Push Kernel Mapping (SPKM)
Experimental Results
Conclusion

2

Reconfigurable Architecture

Reconfiguration is emerging
increasing needs for flexible and high speed computing fabrics
ability to make substantial changes to the datapath itself
in addition to the control flow

CGRAs (Coarse-Grained Reconfigurable Architectures)
High computation throughput
Low power consumption
Fast reconfiguration
Operation level granularity

3

CGRAs

Array of processing elements (PEs)
PE (or reconfigurable cell, RC, in MorphoSys)

Light-weight processor
No control unit
Simple ALU operations

ex) Morphosys, RSPA, ADRES, .etc

4MorphoSys RC Array

MUX A MUX B

A L U

Register

Shift Logic

Register
File

PE structure of RSPA

Application Mapping onto CGRAs

Compiler’s role for CGRAs
analyze the applications
transform the applications to be suitable for CGRA structure

The main compiler issues in CGRAs are…
Parallelism

finding more parallelism in the application
better use of CGRA features

e.g., s/w pipelining
Resource Minimization

to reduce power consumption
to increase throughput
to have more opportunities for further optimizations

e.g., power gating of PEs

5

CGRAs are becoming complex

Processing Element (PE) Interconnection
2-D mesh structure is not enough for high performance

Shared Resources
cost, power, complexity,
multipliers and load/store
units can be shared

Routing PE
In some CGRAs, PE can be
used for routing only
to map a node with degree
greater than the # of connections of a PE

6

RSPA structure

54

87

R

7

5

3

9

10

8

1

2

64

Problem Formulation

Objective of Compiler is to generate mapping…
that utilizes less # of rows
that uses less routing PEs

Objective Function
Given a kernel DAG K = (V, E), and a CGRA C = (P, L), find a
mapping with the objectives described above

Constraints
Path existence
Simple path
Uniqueness of routing PE
No computation on routing PE
Shared resource constraints

more useful than # of PEs due to the
shared resource constraints in practice

7

ILP(Integer Linear Programming)
Formulation

Objectives
Minimize # of rows and # of routing operations(ROs)

Constraints
Each operation can be mapped on one PE
Each PE can have only one operation
of shared resources & Direct interconnections

Suppose …
Each edge might include several RO nodes
Some ROs can be hidden under producer operation

8

8834

1 2 3

1

2
3 2

4 1

88

88

2

1 81

2

1

2

12

1

2

3 2

4
1
2

3
4

(a) Kernel DAG K (b) K’ (c) Mapping Result

1

Graph Drawing Problem (I)

Split & Push Algorithm1

3

24

1
3 1

24

Kernel DAG CGRA

3

24

1

SplitPush

Good Mapping

Kernel DAG CGRA

3 1

24

Split
3

24

1

PushSplit

3

24

1

8

PushSplit

3

24

1

Push

Bad Mapping

Dummy node insertion

Bad split decision incurs more uses of resources
2 vs. 3 columns
Forks incurs dummy nodes, which are ‘unnecessary routing PEs’

Now the question is, how can we reduce the forks?

1G. D. Battista et. al. A split & push approach to 3D orthogonal drawing. In Graph Drawing, 1998.

Fork occurs!!Dummy node insertion

9

Graph Drawing Problem (II)

Matching-Cut2
a set of edges which do not share nodes with any other edges
and whose removal makes the graph disconnected

A cut, but not a matching A matching, but not a cut A matching-cut

2M. Patrignani and M. Pizzonia. The complexity of the matching-cut problem. In WG ’01: Proceedings of the
27th International Workshop on Graph-Theoretic Concepts in Computer Science, 2001.

: shared

Forks can be avoided by finding matching-cut in DAG

3 1

24

3 1

24

A matching-cut, need 4 PEs,
no routing PEs

A cut, need 6 PEs,
2 routing PEs

10

Split & Push Kernel Mapping

7

5

3

9

10

8

1

2

64

11111

111110

7
5

39

10 8

26

4

1

5

3

8

2

6

4

1

7

9

10

3
1 9

4
8
10

2

5

6

7 5

3

8

2

6

4

1

7

9

10

7 5

39

10 8

26

4

1 1111

119

4
8

10

7

53

9

10 8

2

6

4

1

3 1

9

4
8

10

2
5

6

7

PE is connected to at most 6 other PEs.
At most 2 load operations and one store Operation can be scheduled.

Load : Store : ALU : RPE : Fork :
of node : 10
of load : 3
of store : 1
Initial ROWmin = = max(3, 2, 1) = 3

Initial PositionMatching Cut Split & PushNo Matching Cut Forks occurRPEs Insertion ViolationRepeat with increased ROWmin Row-wise Scattering 11

Experimental Setup

We test SPKM on a CGRA called RSPA
RSPA has orthogonal interconnection (irregular interconnection)
Each row has 2 shared multipliers
Each row can perform 2 loads and 1 store (shared resource)
PE can be used for routing only (routing resource)

Random kernel DAG generator
100 applications for each node cardinality

Benchmarks from
Livermore loops,
MultiMedia and DSPStone

12

SPKM maps more applications

SPKM can on average map 3.6X more applications than AHN
For large application, SPKM shows high map-ability since it considers
routing PEs well

13

Y axis : # of applications
that each technique can
map
X axis : # of nodes that
each application has

3.6X more applications

SPKM generates better mapping

14

The minimally utilized rows opportunities to map more operations
ability to map more loop-unrolled kernel
For 66% of the applications, SPKM generates better mappings

AHN can map more
unrolled loop kernel

Both performs the same

SPKM can map more
unrolled loop kernel

SPKM generates better mapping

15

The minimally utilized rows opportunities to map more operations
ability to map more loop-unrolled kernel
For 66% of the applications, SPKM generates better mappings

Both performs the same

ILP can map more
unrolled loop kernel

SPKM has less mapping time

This execution time is measured with not-unrolled input kernels.
SPKM has 8% less mapping time as compared to AHN.
ILP takes very long time 16

SPKM for real benchmarks

SPKM can map more benchmarks than AHN
SPKM can map applications with larger unroll factor

17

AHN fails to map

Conclusion

CGRA is a promising platform
The success of CGRAs depends on the compiler
CGRAs are becoming very complex
We propose ILP approach and Graph-Drawing based
heuristic, SPKM, that considers the details of CGRAs
SPKM shows better ability to map application, better
mapping quality (in power, performance), less mapping
time than the existing heuristic

18

Thank you

