Efficient Mapping onto Coarse-Grained Reconfigurable Architectures using Graph Drawing based Algorithm

Jonghee Yoon, Aviral Shrivastava[†], Sanghyun Park, Minwook Ahn, Reiley Jeyapaul[†], and Yunheung Paek

SO&R Research Group

[†] CML Laboratory

Seoul National University, Korea

Arizona State University, USA

Outline

- Coarse-Grained Reconfigurable Architectures
- Issues on Application Mapping onto CGRAs
- ILP(Integer Linear Programming) Formulation
- Graph Drawing Algorithm
 - Split & Push
 - Matching-Cut
- Split & Push Kernel Mapping (SPKM)
- Experimental Results
- Conclusion

Reconfigurable Architecture

Reconfiguration is emerging

- increasing needs for flexible and high speed computing fabrics
- ability to make substantial changes to the *datapath itself* in addition to the *control flow*
- CGRAs (Coarse-Grained Reconfigurable Architectures)
 - High computation throughput
 - Low power consumption
 - Fast reconfiguration
 - Operation level granularity

CGRAs

Array of processing elements (PEs)

- PE (or reconfigurable cell, RC, in MorphoSys)
 - Light-weight processor
 - No control unit
 - Simple ALU operations

• ex) Morphosys, RSPA, ADRES, .etc

PE structure of RSPA

Application Mapping onto CGRAs

- Compiler's role for CGRAs
 - analyze the applications
 - transform the applications to be suitable for CGRA structure
- □ The main compiler issues in CGRAs are...

Parallelism

- finding more parallelism in the application
 - → better use of CGRA features
- e.g., s/w pipelining
- Resource Minimization
 - to reduce power consumption
 - to increase throughput
 - to have more opportunities for further optimizations
 - e.g., power gating of PEs

CGRAs are becoming complex

Processing Element (PE) Interconnection

2-D mesh structure is not enough for high performance

Shared Resources

- cost, power, complexity,
- multipliers and load/store units can be shared

Routing PE

- In some CGRAs, PE can be used for routing only
- to map a node with degree greater than the # of connections of a PE

RSPA structure

Problem Formulation

- Objective of Compiler is to generate mapping...
 that utilizes *less # of rows* → more useful than *# of PEs* due to the
 - that uses less routing PEs
 shared resource constraints in practice
- Objective Function
 - Given a kernel DAG K = (V, E), and a CGRA C = (P, L), find a mapping with the objectives described above
- Constraints
 - Path existence
 - Simple path
 - Uniqueness of routing PE
 - No computation on routing PE
 - Shared resource constraints

ILP(Integer Linear Programming) Formulation

- Objectives
 - Minimize # of rows and # of routing operations(ROs)
- Constraints
 - Each operation can be mapped on one PE
 - Each PE can have only one operation
 - # of shared resources & Direct interconnections
- □ Suppose …
 - Each edge might include several RO nodes
 - Some ROs can be hidden under producer operation

Graph Drawing Problem (1)

- Bad split decision incurs more uses of resources
 - 2 vs. 3 columns
 - Forks incurs dummy nodes, which are 'unnecessary routing PEs'
- Now the question is, how can we reduce the forks?

¹G. D. Battista et. al. A split & push approach to 3D orthogonal drawing. In Graph Drawing, 1998. 9

Graph Drawing Problem (II)

Matching-Cut²

a set of edges which do not share nodes with any other edges and whose removal makes the graph disconnected

A cut, but not a matching

A matching, but not a cut

A matching-cut

Forks can be avoided by finding matching-cut in DAG

²M. Patrignani and M. Pizzonia. The complexity of the matching-cut problem. In WG '01: Proceedings of the 27th International Workshop on Graph-Theoretic Concepts in Computer Science, 2001.

Split & Push Kernel Mapping

- PE is connected to at most 6 other PEs.
- At most 2 load operations and one store Operation can be scheduled.
 - Load :

- □ # of node : 10
- □ # of load : 3
- □ # of store : 1
- Initial ROW_{min} = $max(\lceil |V|/|N|\rceil, \lceil L/L_r\rceil, \lceil S/S_r\rceil) = max(3, 2, 1) = 3$

ALU : (

RPE : 🗾

NRepterunder to the or RSDV Gur

Station and the second second

Fork : ----

Experimental Setup

- We test SPKM on a CGRA called RSPA
 - RSPA has orthogonal interconnection
 - Each row has 2 shared multipliers
 Each row can perform 2 loads and 1 store (shared resource)
 - PE can be used for routing only

Random kernel DAG generator

- 100 applications for each node cardinality
- Benchmarks from Livermore loops, MultiMedia and DSPStone

(irregular interconnection)

(routing resource)

SPKM maps more applications

- □ SPKM can on average map 3.6X more applications than AHN
- For large application, SPKM shows high map-ability since it considers routing PEs well

SPKM generates better mapping

- □ The minimally utilized rows → opportunities to map more operations → ability to map more loop-unrolled kernel
- □ For 66% of the applications, SPKM generates better mappings

SPKM generates better mapping

- □ The minimally utilized rows → opportunities to map more operations → ability to map more loop-unrolled kernel
- □ For 66% of the applications, SPKM generates better mappings

SPKM has less mapping time

- □ This execution time is measured with not-unrolled input kernels.
- SPKM has 8% less mapping time as compared to AHN.
- ILP takes very long time

SPKM for real benchmarks

- SPKM can map more benchmarks than AHN
- SPKM can map applications with larger unroll factor

Conclusion

- CGRA is a promising platform
- The success of CGRAs depends on the compiler
- CGRAs are becoming very complex
- We propose ILP approach and Graph-Drawing based heuristic, SPKM, that considers the details of CGRAs
- SPKM shows better ability to map application, better mapping quality (in power, performance), less mapping time than the existing heuristic

Thank you