Block Remap with Turnoff: A Variation-Tolerant Cache Design Technique

Mohammed Abid Hussain IIIT-H, INDIA abid@research.iiit.ac.in Madhu Mutyam IIT-M, INDIA madhu@cse.iitm.ac.in

- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

Introduction

- What are process variations?
- Why are process variations so important in the present technology?
- Types of process variations
 - Die to die
 - With in die

- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

Effects of process variations on a cache

- Access time and leakage power increases.
- In 130 nm technology due to process variations
 - 30% variation in the maximum allowable frequency
 - 5 fold increase in the leakage power dissipated.

- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

Worst case design techniques

- Access the whole cache with worst case access latency
 - Problem
 - Inefficient, if the percentage of affected sets are less
- Turn off all the affected portions and access the remaining part with low latency
 - Problem
 - Inefficient, if the percentage of affected sets are more

- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

Block Remap with Turnoff technique (BRT)

Two steps

- 1) Block Remap
- 2) Block Turnoff

- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

Block Remap

- Main idea
 - Distribute all the affected blocks among all the sets as equally as possible
- Implementation
 - One remap register per way. Final index is obtained by XOR-ing the original index with the remap register
 - During the pre-processing the remap register contents are chosen such that each set gets almost equal number of affected blocks
 - Remap register contents are restricted to either all zeros or a one hot code to reduce the preprocessing time

- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

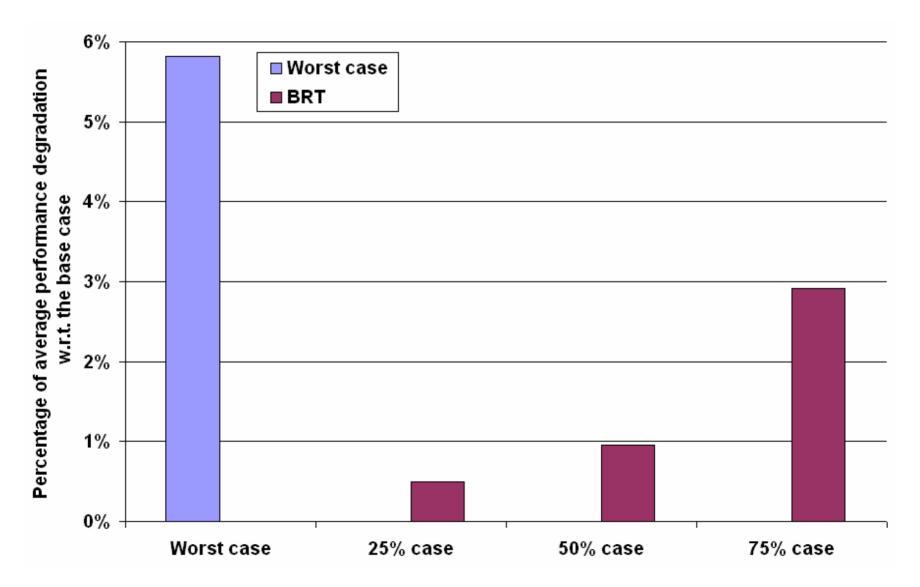
Block Turnoff

- Main Idea
 - If the affected, high latency blocks in a set are turned off, then the remaining un-affected blocks of the set can be accessed with low latency
- Implementation
 - Turnoff all the affected blocks in a set if there exists at least one defect free block in it and access that set with low latency
 - Affected blocks in a set are not turned off if there is no defect free block in their set, and the set is accessed with high latency

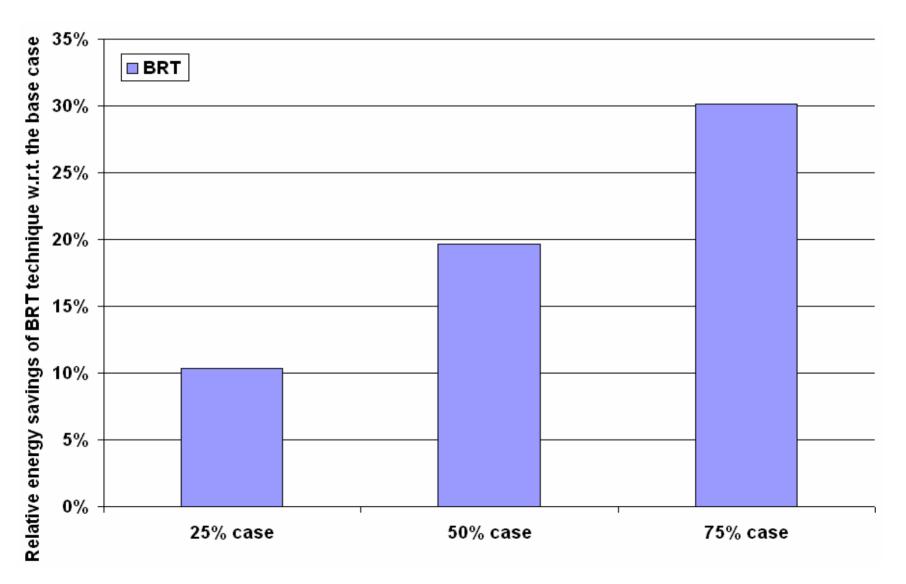
- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

Example

Set 0	0	0	0	0]	0	2	4	2
Set 1	1	1	1	1		1	3	5	3
Set 2	2	2	2	2		2	0	6	0
Set 3	3	3	3	3		3	1	7	1
Set 4	4	4	4	4		4	6	0	6
Set 5	5	5	5	5		5	7	1	7
Set 6	6	6	6	6		6	4	2	4
Set 7	7	7	7	7		7	5	3	5
	Way 0	Way 1	Way 2	Way 3	-	Way 0	Way 1	Way 2	Way 3
Optimum register remap =						000	010	100	010
(a) CAS						(b) BRT			


- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

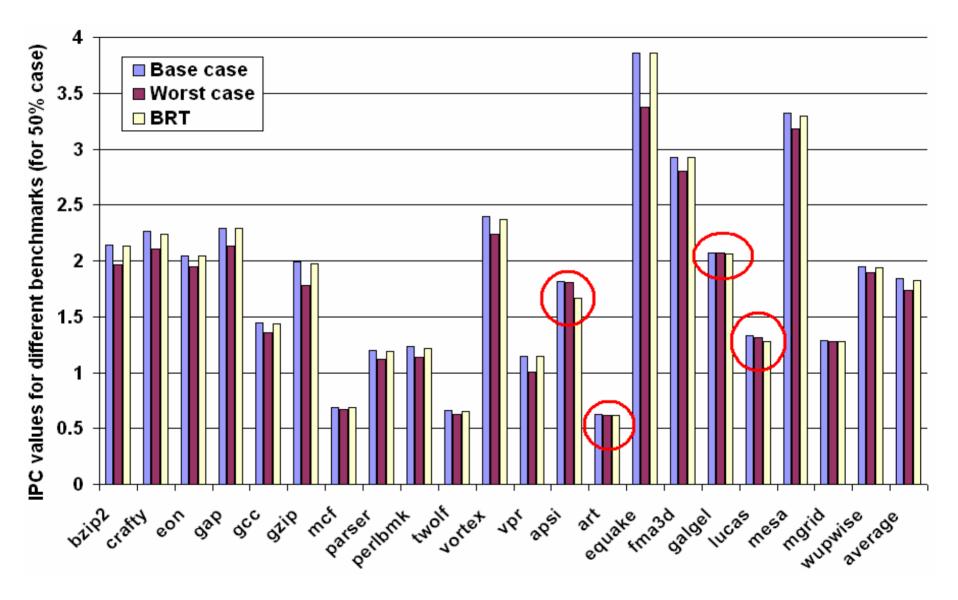
Dealing with variable cycle access latency


- To deal with non uniform access latency, we use the 2 delta stride based latency predictor.
- The dependant instructions are issued based on the predicted access latency of the load instruction.
- If the prediction is wrong, the pipeline is flushed and the instructions are executed again.

- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

Results

Results (cont'd)


- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

Conclusion

- Process variations pose a serious problem in advanced technologies, leading to reduced chip yield.
- BRT technique reduces
 - Reduces performance penalty
 - Reduces excess leakage power dissipation

- Introduction
- Effects of process variations on a cache
- Worst case design techniques
- Block Remap with Turnoff technique
 - Block Remap
 - Block Turnoff
 - Example
 - Dealing with variable cycle access latency
- Results
- Conclusion
- Future work

Future work

Thank you.

Any questions?