
Webpage-Based Benchmarks for Mobile Device Design

Marc S Somers and JoAnn M Paul Virginia Tech

Communication Across the World

- Web pages becoming the standard of information exchange
- Mobile Devices becoming computer of choice
- How do web pages impact mobile device architecture?

Source: comScore Media Metrix, based on average minutes per visitor by category (8/05). Browsing / Other includes general web-surfing activity not listed in other categories, including anything from news sites (cnn.com) to retail (Amazon.com) to job sites.

Figure 1. US Online Usage [1]

Complexity of Webpage Content

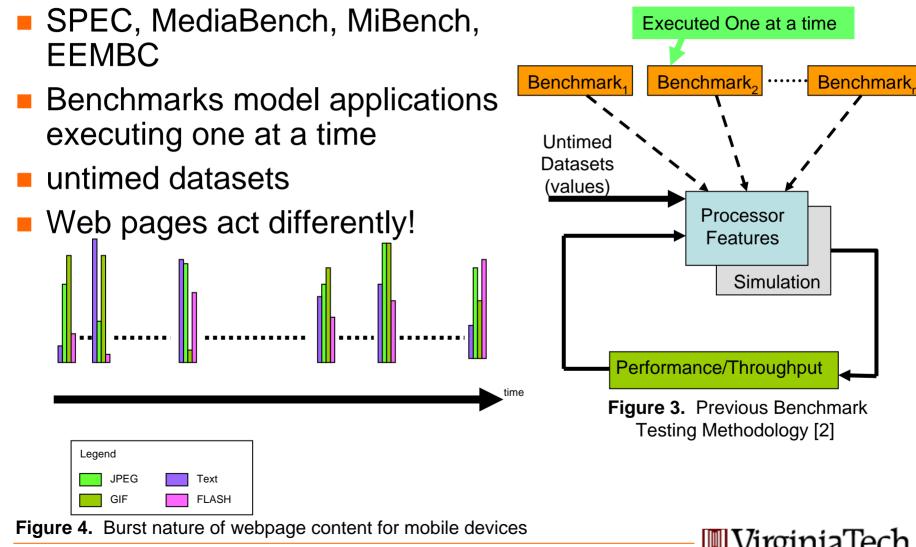

- Three basic elements
 - Text/scripts
 - Images
 - Movie/animated FLASH
- Three movie/animated FLASH
 - MPEG
 - FLASH Movies
 - Still-image FLASH frame
- Only analyzing FLASH frame
- Heterogeneous content, each providing unique characteristics

Figure 2. Screenshot of MLB webpage

Benchmark Suites

[2] Paul, J., Thomas, D., and Bobrek, A.,

"Scenario-Oriented Design for Single-Chip Heterogeneous Multiprocessors", IEEE Transactions on VLSI, vol. 14, no. 8, August, 2006, pp. 868-880.

3

Invent the Future

Webpage Survey

Otation Data of Mahaitan [0]

Statistical Data of Websites [3]						
Statistics	BBC	CNN	ESPN	MLB	VT.edu	
Total Objects	214	414	92	75	124	
Total Size	268.99 KB	438.13 KB	343.54 KB	116.54 KB	394.09 KB	
Total JPEG	10	8	10	5	24	
Total GIF	193	390	61	57	86	
Total FLASH	0	0	10	3	1	
Total Text	11	16	11	10	13	
% Media Content	94.9%	96.1%	88.0%	86.7%	89.5%	

I ext composition of vvebsites [3]						
File Types	BBC	CNN	ESPN	MLB	VT.edu	
TEXT > 50k	1	0	0	0	0	
TEXT > 30k	1	3	2	0	0	
TEXT > 20k	0	0	3	1	1	
TEXT > 10k	0	3	1	0	1	
TEXT > 5k	3	6	2	1	5	
TEXT > 1k	3	4	1	6	4	
TEXT <= 1k	0	0	2	2	2	

Taxt composition of Moheitas [2]

- Sample Data collected
- More media oriented content
 - Only analyzed 2007
 - Content changed from 5 years ago and will continue to change

Invent the Future

News websites have larger text/script files

[3] Webpage Analyzer, website,

http://www.websiteoptimization.com/services/analyze/.

Questions so far...

- Does this mean that we need to re-think the form of the way we evaluate mobile device architectures?
- Can individual usage patterns impact architectures?
 - Sports Fanatic
 - Wall Street Investor
 - Typical College Student
 - International News Junkie
 - College Sports Fanatic
 - Specific Sporting Teams
 - General Web Surfer

Experiment Setup

- Collect Webpage Content Data
 - Model Webpages
 - Predict Webpage Access Patterns
- Collect Processor Data
- Experimental Model
- Simulator

Webpage Access Patterns

- Different users surf different web pages
- Webpage profiling not performed
 - User access patterns estimated
 - Meant to show impact of webpage usage

Type of Person		CNN	ESPN	MLB	College Homepage
International Political Junkie 90		10			
Web Surfer	20	20	20	20	20
Political and College Sports Enthusiast	25	20	20 35		
Political Junkie	75	20	5		
Sports Fanatic	0	0	75	15	10
Typical College Student 65		5	25	5	10

Webpage Utilization (in %) for Various User Profiles

Processor Parameters

EEMBC

- Inadequate benchmarks available for standard mobile processors
- Embedded benchmarks shows performance for all tasks
- Relative performance from different processors reflective of performance for mobile processors

8

Relative Area and Power Consumption Comparison

Processor	Relative Area	Relative Power
AMD-K6E => 500 MHz	3.40	19.86
PNX1702 => 500 MHz	1	4.03
ADSP-BF533 => 594 MHz	1.58	1

Overall Relative Performance

Task Type	DSP	Media	GPP	
JPEG	14.294	127.642	25.868	
Text	17.536	5.973	29.952	
MPEG	1.28	4.383	1	

System Model

- Web pages have links to objects
- Test multiple web pages
- Models for various Processor Types
- Models for
 Scheduler Input
- Are complex scheduling strategies worthwhile?

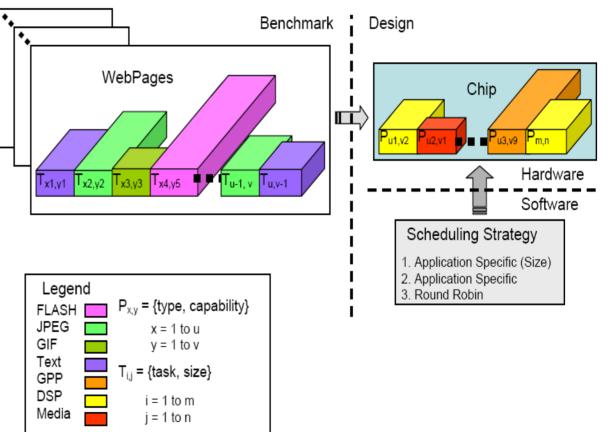
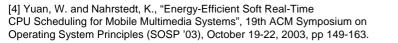


Figure 5. Abstraction model of webpage interaction with chip architecture


Scheduling Strategies

Static

- Certain application types execute on certain processors
- Round Robin
 - Assign any task to any available processor (dynamic)
- Application Specific
 - Assign particular task types to particular processors
- Application Specific Size
 - Assign particular task types to particular processors based on task sizes

		Application Specific	Application Specific	Application Specific	
Scheduler Overhead	Round Robin	Size	(Big)	(Small)	Static
Cycles	159	4770	1590	1590	159
Time (secs)	5.06E-05	1.52E-03	5.06E-04	5.06E-04	5.06E-05

Scheduler Performance Overhead [4]

Simulators

HDLs

- Do not allow for high-level evaluation
- SpecC
 - Geared towards CAD tool usage, limits user extensibility
- SystemC
 - C++ Extension library, no dedicated compiler debugging during runtime
- None allow for heterogeneous tasks on heterogeneous hardware
 - Example: Task type A can execute on processor types X, Y, and Z
- Majority are cycle accurate too slow

Modeling Environment for Software and Hardware (MESH)

12

- Easily models designs above ISS
- Model heterogeneous architectures and applications
- Timed system inputs => system response over time
- Power/Energy Consumption
 - Multiple methods
 - Single power value
 - Estimated 10% error [5]

MESH is now available at www.ece.wisc.edu/~soar

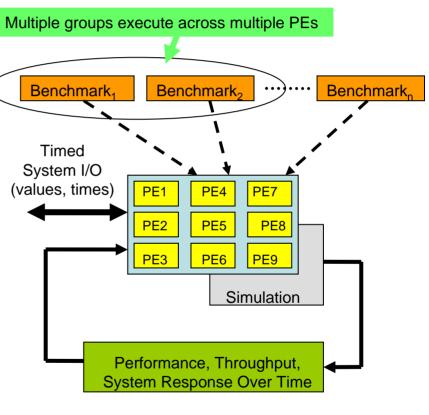


Figure 6. Multiprocessor Design

^[5] Meyer, B., Pieper, J., Paul, J., Nelson, J., Pieper, S., and Rowe, A., Power-Performance Simulation and Design Strategies for Single-Chip Heterogeneous Multiprocessors, IEEE Transactions on Computers, June 2005.

Experiments

- Two experiments
 - Average performance over all webpage types
 - User accesses web pages of particular types
- Normalized all performance results against the performance of a homogeneous multiprocessor, using GPPs.
- See if scheduling strategy influences webpage benchmark performance
- See if certain user profiles/access patterns prefer certain architectures

Results – Performance

Overall Normalized Homogeneous GPP Performance

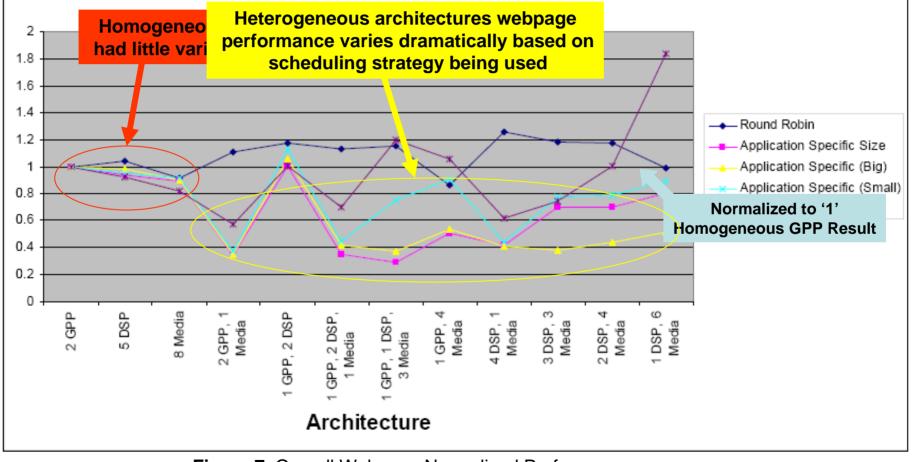


Figure 7. Overall Webpage Normalized Performance

14

Results – Webpage Utilization

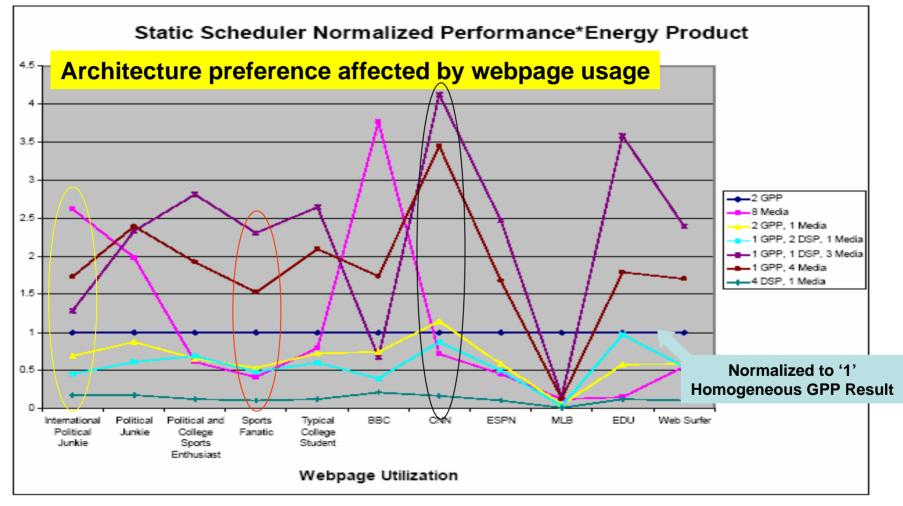


Figure 8. Static Scheduler Webpage Utilization

Results – Webpage Utilization

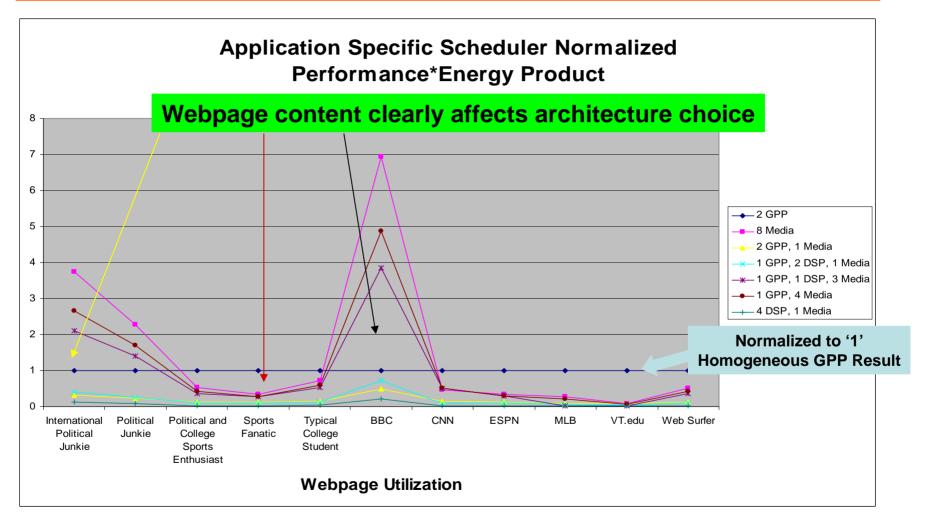


Figure 9. Application Specific Scheduler Webpage Utilization

16

Conclusion/Future Work

- The structure and content of Webpages can affect the architecture of mobile devices
- User access patterns can additionally affect architecture
- More investigation is clearly warranted
 - Flash
 - Additional user profiles
 - New Design Techniques
- Future Work
 - Incorporate Task Migration
 - Model memory/communication overhead
 - The development of more comprehensive Webpage-based benchmark suite is clearly warranted

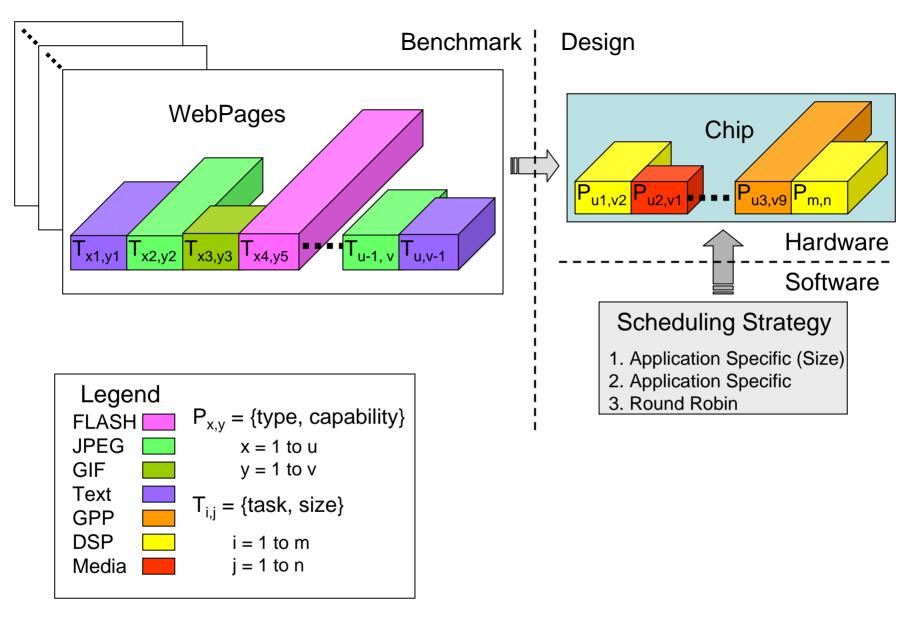


Figure 5. Abstraction model of webpage interaction with chip architecture

