Best Ways to use Billions of Devices on a Wireless Mobile SoC

Jan 24. 2008

Kyung-Ho Kim, Vice President
Telecommunication R&D Center,
Telecommunication Network Business,
Samsung Electronics Co., LTD.
Wireless Mobile SoC Trends

• The state-of-the art SoC for Wireless Handheld Devices

One-Chip Integration (SoC/SiP)

• Application Processor
 - Ever-increasing performance (over 1GHz)
 - Diverse applications: VoIP, Video, Audio, Graphics, Game, Navigation, Web-browse, Email
 - Multiprocessors: MPCore CPUs + Graphic Processors

• Samsung’s mDirac / SAVm Processors
• Marvell PXA / TI’s OMAP3

• Baseband Processor
 - Ever-increasing communication data-rate (over 100Mbps)
 - Diverse Standards: 2G/3G/WMAN/WLAN/ WPAN/MobileTV
 - Multiprocessors: CPU + DSPs
 - One-Chip RF Integration

• Samsung’s 802.16e / Marvell’s 802.11n

Telecommunication R&D Center, Samsung Electronics Co., LTD.
Requirements of Wireless Mobile SoC

- Wireless application has different requirements than other computer or embedded applications.
 - Higher Clock Speed does NOT guarantee the Higher Air Throughput.
 - Integration density is not so high as computer application SoCs.
 because Ultra-Low-Power/Heat/form-factor design is more important.
 - Inter-Operability Test may take the most time of chip development.
 - Communication Protocol SW development is larger scale and costly.

<table>
<thead>
<tr>
<th></th>
<th>Computer SoC</th>
<th>Embedded SoC</th>
<th>Wireless Mobile SoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>Very High</td>
<td>High ~ Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Density</td>
<td>Very High</td>
<td>High ~ Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Power</td>
<td>Very High</td>
<td>High ~ Low</td>
<td>Very Low</td>
</tr>
</tbody>
</table>
Engineering Issues for Baseband Processor

1. System-level Low-power design
 - Performance is ever-increasing but battery is never sufficient.
 - Top-down low-power design is needed from system-level to physical-level

2. Programmability and Reconfigurable design
 - Multi-standard support on a single chip
 - Early development before the standard fixed
 - Flexible Repair and debugging without silicon re-spin!

 - ASIC+DSP design for PHY processing, CPU for protocol processing
 - Seamless Data Flow via RF → BP → Host (AP) → Storage or Display

4. System Integration
 - SoP / Embedded PCB Integration of AP+BP or BP+RFIC

Telecommunication R&D Center, Samsung Electronics Co., LTD.
Low-Power Issue for Handsets

- Many high-end computer applications are running on Smart-Phones.
- Baseband Processing and RF needs more power which always comes with Heat!
 (e.g., MIMO tech. \rightarrow Multiple Antennas \rightarrow Multiple Power Amplifiers)
- **Aggressive Low-Power Techniques are being used** and will be used in BP.
 - Dynamic Power Reduction: Clock Gating, Dynamic Voltage Freq. Scaling, \rightarrow Adaptive Voltage Scaling
 - Leakage Power Reduction: Multi-V_{th} Cell, Power Gating. \rightarrow Sleep Tr., Body-Bias Control
- **System-level Low-Power design is more crucial**
 - Algorithm: **Power-aware Protocol Standard**
 - Architecture: Low-Power Modem H/W architecture (Less Buffer, Lower Frequency, Modular design)
 Parallel Processing lowers the frequency and voltage.
Reconfigurability Issue for Handsets

- **Existing Mobile Chip contains Multiple RF Transceivers / Baseband Modems**
- **Multiband RF, Multimode Modem**
 - Provides Multiple Telecom. Mode on a single architecture
 - **Multiband RF Transceiver**: Variable Frequency Tunable RF structure
 - **Multimode Baseband Modem**: Reconfigurable structure according to Telecom. Mode

Today

- **Multiple RF Transceiver**
 - 2.4GHz (WLAN)
 - 5 GHz (WLAN)
 - 2.3GHz (WiMax)
 - 200MHz (T-DMB)

Future

- **Multiband Antenna**
- **Multiband RF Tx/Rx**
- **Freq. Control**
- **Controller**
- **Mode Control**

- **Multiple Baseband Modem**
 - WLAN BB 11a/b/g
 - WiMax BB WiBro, 16e
 - DMB BB T-DMB, DVB-H

Telecommunication R&D Center, Samsung Electronics Co., LTD.
Best Way to use Billions of Devices on a Wireless SoC

Requesting to EDA, Fabrication, IP Industrials and Academia

“Wireless Terminal Manufacturers are facing more urgent challenges than increasing the chip density and its clock speed!”

1. Ultra Low-Power Design Technology
 – Need to Reduce Power Consumption to a Tenth!
 • Completely New System, Architecture, Circuit and Process technology
 – IP Provider should support aggressive Low-Power Mode and Features.
 • ex) Sleep-mode support when it is idle, Data-driven clock gating
 – Highly Scalable and Parallel Architecture is preferable.

2. Reconfigurable Technology
 – Highly Scalable & Flexible Multicore/Multithread DSP architecture
 – Ultra low-power & less-area embedded FPGA and its compiler support
 – Various Multimode-supporting IPs for Wireless Modem

GALS: Globally Asynchronous Locally Synchronous