Adaptive I nter-router Links for Low-Power, Area-Efficient and Reliable Network-on-Chip (NoC) Architectures

Avinash Karanth Kodit , Ashwini Sarathy*, Ahmed Louri* and J anet Wang*
${ }^{\dagger}$ Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701
*Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721
E-mail: kodi@ohio.edu, \{sarathya, louri, wml\} @ece.arizona.edu
Speaker: J in Sun
Dept. of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721

Sponsored: National Science Foundation (NSF) grants CCR-0538945 and ECCS-0725765
(at the High Performance Computing Architectures and Technologies Lab, University of Arizona, Tucson)

Talk Outline

- Motivation
- iDEAL - inter-router Dual-function Energy and Area-efficient Links for NoC architectures
- Dual-function links
- Design of static \& dynamic router buffer
- Performance Evaluation
- Power and area estimation
- Simulation results (power, throughput)
- Design headroom for Negative Bias Temperature I nstability (NBTI) related reliability issues
- Conclusion

Motivation for Networks-on-Chips

(1/2)
-Technology scaling - I ncrease in transistor density on a single chip
-Chip MultiProcessors (CMPs) and MultiProcessor System-on-Chip (MPSoC) architectures

- Challenges in future scaling of CMPs and MPSoCs :

- Overcoming the increasing wire delays
- Minimizing the power consumption

Motivation for Networks-on-Chips

(2/2)
Wire delay constraint with decreasing feature size

* Gate Delay	
\pm Sum of Delays, $\mathrm{Al} \& \mathrm{SiO}_{2}$	
-- Sum of Delays, Cu \& Low κ	
-- Interconnect Delay, $\mathrm{Al} \& \mathrm{SiO}_{2}$	
- Interconnect Delay, Cu \& Low K	
AI	$3.0 \mu \Omega-\mathrm{cm}$
Cu	$1.7 \mu \Omega-\mathrm{cm}$
SiO_{2}	$\kappa=4.0$
Low K	$\kappa=2.0$
Al \& Cu	. 8μ Thick
Al \& Cu Line	43μ Long

- RC delay of local wires increasing by 32\% per year ${ }^{2}$
- Cross-chip (global) wire delays increasing by 49\% per year ${ }^{2}$

1. 1997 Roadmap of the Semiconductor I ndustry Association
2. W. J. Dally and J. W. Poulton, Digital Systems Engineering, Cambridge University Press, NY, USA, 2001.

The Network-on-Chip (NoC) Paradigm

Significance of Router Buffers in NoCs

Recent NSF-sponsored workshop on On-Chip I nterconnection Networks ${ }^{[1]}$:

- "The most important technology constraint for on-chip networks is power consumption".
- Power consumption of OCI Ns implemented with current techniques exceeds expected needs by a factor of 10 .

Power Break-up in the NoC Router [2]

Area profile of a generic NoC Router ${ }^{[2]}$

1. J.D.Owens, W.J .Dally, R.Ho, D.N.J ayasimha, S.W.Keckler and L.S.Peh, "Research Challenges for On-Chip I nterconnection Networks", I EEE Micro, vol. 27, no. 5, pp. 96 - 108, September-October 2007.
2. S.R.Vangal, et al., "An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS", I EEE J. Solid-State Circuits, Vol. 43, no. 1, J anuary 2008.

iDEAL - I nter-router Dual-function Energy and Areaefficient Links for NoC architectures

iDEAL - I nter-router Dual-function Energy and Areaefficient Links for NoC architectures

iDEAL Methodology

- Reduce the number of router buffers
(power and area savings)
- Use adaptive link buffers to store data along the links when required (create more storage)
- Dynamic buffer allocation within the router buffers
(to sustain performance)

Conventional (Repeater-I nserted) Links

iDEAL - Link Buffer Design (1/2)

iDEAL - Link Buffer Design (2/2)

Control block

Functions as a conventional repeater when there is no congestion.

Control block is turned 'OFF'.

Repeater tri-stated and holds the sampled value, during congestion.

Control block is turned 'ON'.

Control Block

- Uses double-sampling technique ${ }^{2}$ for stable error-free operation under varying frequencies
- Power consumption (about $6 \mu \mathrm{~W}$ when enabled)

Dual-function Link

Statically Allocated Router Buffer

- Static buffer allocation
- Fixed number of buffers per VC
- HoL blocking
$\mathrm{RP}=$ read pointer, $\mathrm{WP}=$ write pointer, $\mathrm{OP}=$ output port, $\mathrm{OVC}=$ output $\mathrm{VC}, \mathrm{CR}=$ credits, $\mathrm{C}^{*}=$ congestion Status = status of the VC (idle, waiting, RC, VA, SA, ST)

Dynamically Allocated Router Buffer (1/2)

$\mathrm{RP}=$ read pointer, $\mathrm{WP}=$ write pointer, $\mathrm{OP}=$ output port, $\mathrm{OVC}=$ output $\mathrm{VC}, \mathrm{CR}=$ credits, $\mathrm{C}^{*}=$ congestion Status = status of the VC (idle, waiting, RC, VA, SA, ST)

Dynamically Allocated Router Buffer (2/2)

- Example illustrating Dynamic buffer allocation in iDEAL

$\mathrm{RP}=$ read pointer, $\mathrm{WP}=$ write pointer, $\mathrm{OP}=$ output port, $\mathrm{OVC}=$ output $\mathrm{VC}, \mathrm{CR}=$ credits, $\mathrm{C}^{*}=$ congestion Status = status of the VC (idle, waiting, RC, VA, SA, ST)

Performance Evaluation

- Evaluated on a cycle-accurate on-chip network simulator
- Simulated 8×8 Mesh and 8×8 Folded Torus topologies
- Synthetic benchmarks such as uniform, and non-uniform workloads (Butterfly, Complement, Perfect Shuffle, Matrix Transpose, Bit Reversal) as well as SPLASH-2 suite benchmarks (FFT, LU, MP3D, WATER, RADIX) were evaluated
- Parameters evaluated include throughput, latency and overall network power
- Considered 5 different configurations - $\left(v n_{V}-\mathrm{rn}_{R}-\mathrm{Cn} \mathrm{C}_{\mathrm{C}}\right)$
($\mathrm{n}_{\mathrm{V}}=$ No. of VCs per input port, $\mathrm{n}_{\mathrm{R}}=$ No. of router buffers per VC, $\mathrm{n}_{\mathrm{C}}=$ number of channel buffers)
- Baseline $=440$
- 434, 428, 344, 531

Different Test Cases Considered

Baseline NoC Router with 4 VCs per input port, 4 128-bit router buffers per

VC and no adaptive link buffers

Case with 4 VCs per input port, 2 128-bit router buffers per VC and 8 adaptive link
buffers - v4-r2-c8

Power Estimation - Summary with values from Synopsys Design Compiler

$\begin{gathered} \mathbf{v n}_{\mathrm{v}}- \\ \mathrm{rn}_{\mathrm{R}}- \\ \mathrm{cn}_{\mathrm{c}} \end{gathered}$	Buffer Power (mW)	Mesh Link + Control Power (mW)	Folded Torus Link + Control Power (mW)	Mesh Total Power (Buffer + Link) (mW)	\% Change	Folded Torus Total Power (Buffer + Link) (mW)	\% Change
v4-r4-c0	19.54	2.45 + 0	$3.94+0$	21.99	-	23.48	-
v4-r3-c4	14.51	$2.90+0.0012$	$4.39+0.0012$	17.42	-20.78	18.91	-19.46
v4-r2-c8	11.57	$3.55+0.02$	$5.04+0.02$	15.14	-31.15	16.63	-29.17
v3-r4-c4	15.09	$2.90+0.0012$	$4.39+0.0012$	18.00	-18.14	19.49	-16.99
v3-r3-c7	12.56	$3.49+0.0180$	$4.98+0.0180$	16.06	-26.96	17.55	-25.25

$n_{V}=$ number of $V C S$ per input port, $n_{R}=$ number of router buffers per $V C, n_{C}=$ number of link buffers

Area Estimation - Summary with values from Synopsys Design Compiler

$\begin{gathered} \mathrm{vn}_{\mathrm{v}}^{-} \mathrm{rn}_{\mathrm{R}} \end{gathered}$	Buffer Area ($\mu \mathrm{m}^{2}$)	Link Repeater Area (μ m²)	Total Buffer + Link Area ($\mu \mathrm{m}^{2}$)	\% Change
v4-r4-c0	81,407	8,960	$\mathbf{9 0 , 3 6 7}$	-
v4-r3-c4	63,991	6,656	70,647	-21.8
v4-r2-c8	48,066	10,240	58,306	-35.5
v3-r4-c4	63,250	6,656	69,906	-22.6
v3-r3-c7	50,373	9,344	59,717	-34.0

$n_{V}=$ number of VCs per input port, $n_{R}=$ number of router buffers per VC, $n_{C}=$ number of link buffers

Network Simulation Results

- Uniformly distributed traffic
\Rightarrow Only about 3\% drop in throughput for the v4-r2-c8 case
(428 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

Network Simulation Results

- Total power consumed for a network load of 0.5
\Rightarrow Nearly 30\% savings in overall network power for the v4-r2-c8 case
(428 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

Buffer Power - Synthetic Traffic

- Reduction in power for all configurations, under all traffic patterns, compared to the baseline (440)
- For example, under Complement traffic the 4-2-8 configuration achieves 40\% savings

Throughput - Synthetic Traffic (4/6)

Throughput (8×8 Mesh) at an Offered Load $=0.5$

- No significant decrease in throughput under any traffic pattern, using Dynamic allocation

Simulation results for the SPLASH-2 suite (5/6)

Overall Network Power (8x8 Mesh)

- Nearly 30\% savings in overall network power for the v4-r2-c8 case with only about 1\% drop in performance
(v4-r2-c8 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

Aggressive Speculation

Saturation Throughput (8x8 Folded Torus) Uniform Traffic

Average Latency (8x8 Folded Torus) -

- Aggressive speculation by increasing the number of credits available to 8
- Additional credits are accounted for by the link buffers
\Rightarrow Saturation throughput improves by 10\% for the 428 case

Design Headroom for NBTI-related issues

- Negative Bias Temperature Instability (NBTI) affects PMOS gates with a ' 0 ' input. Additional circuits may be employed to change the input of 'I dle' PMOS gates to ' 1 ' ${ }^{3}$.
- iDEAL architecture 'moves some of the buffers from the router to the links' and provides a low-power area-efficient solution with
- Reduced power density and temperature in the routers, thereby alleviating NBTI-related degradation
- Sufficient design headroom for the Thermal Design Power (TDP) of the auxiliary circuits

$$
\begin{aligned}
& \mathrm{TDP}_{\text {NoC }} \leqslant \mathrm{P}_{\text {saved }} \\
& \mathrm{TDP}_{\mathrm{NoC}}=\mathrm{K} \times \mathrm{S}_{\mathrm{r}}
\end{aligned}
$$

$$
\left(P_{\text {saved }}=\text { power reduction achieved by iDEAL, } K=\right.\text { impact of the area on the TDP, }
$$

$$
\mathrm{S}_{\mathrm{r}}=\text { area reduction achieved by iDEAL) }
$$

Conclusion

- iDEAL architecture provides a low-power area-efficient solution for NoCs, by reducing power consumption through circuit-level and architecture-level techniques.
- Simulation results show that by reducing the buffer size in half, a 30\% savings in overall network power and 35% savings in overall area is achieved.
- There is only a marginal 1-3\% drop in performance, under dynamic buffer allocation. (note: Performance degradation has been solved already)
- Further, the significant reduction in power and area provide sufficient headroom for monitoring NBTI effects.

Questions?

kodi@ohio.edu

