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Talk OutlineTalk Outline

• Motivation

• iDEAL – inter-router Dual-function Energy and 
Area-efficient Links for NoC architectures
– Dual-function links
– Design of static & dynamic router buffer

• Performance Evaluation
– Power and area estimation
– Simulation results (power, throughput)
– Design headroom for Negative Bias Temperature 

Instability (NBTI) related reliability issues

• Conclusion
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•Technology scaling - Increase in transistor density on a single chip

•Chip MultiProcessors (CMPs) and MultiProcessor System-on-Chip 
(MPSoC) architectures

••Technology scaling Technology scaling -- Increase in transistor density on a single chipIncrease in transistor density on a single chip

••Chip Chip MultiProcessorsMultiProcessors ((CMPsCMPs) and ) and MultiProcessorMultiProcessor SystemSystem--onon--Chip Chip 
((MPSoCMPSoC) architectures) architectures

- Challenges in future scaling of CMPs and MPSoCs :

- Overcoming the increasing wire delays
- Minimizing the power consumption

Intel quad core Intel 80-tile Polaris - WaferTilera TILE64

Motivation for NetworksMotivation for Networks--onon--ChipsChips
(1/2)(1/2)
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Wire delay constraint with decreasing feature size 

Motivation for NetworksMotivation for Networks--onon--ChipsChips
(2/2)(2/2)

• RC delay of local wires 
increasing by 32% per year2

• Cross-chip (global) wire delays 
increasing by 49% per year2

• RC delay of local wires 
increasing by 32% per year2

• Cross-chip (global) wire delays 
increasing by 49% per year2

1. 1997 Roadmap of the Semiconductor Industry Association
2. W. J. Dally and J. W. Poulton, Digital Systems Engineering, Cambridge University Press, NY, USA, 2001.
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The NetworkThe Network--onon--Chip (Chip (NoCNoC) Paradigm) Paradigm
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Modular and Scalable NoC architectures
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Significance of Router Buffers in Significance of Router Buffers in NoCsNoCs

1. J.D.Owens, W.J.Dally, R.Ho, D.N.Jayasimha, S.W.Keckler and L.S.Peh, “Research Challenges for On-Chip Interconnection 
Networks”, IEEE Micro, vol. 27, no. 5, pp. 96 – 108, September-October 2007.

Recent NSF-sponsored workshop on On-Chip Interconnection 
Networks[1] :
• “The most important technology constraint for on-chip networks is
power consumption”.
• Power consumption of OCINs implemented with current techniques 
exceeds expected needs by a factor of 10.

Recent NSF-sponsored workshop on On-Chip Interconnection 
Networks[1] :
• “The most important technology constraint for on-chip networks is
power consumption”.
• Power consumption of OCINs implemented with current techniques 
exceeds expected needs by a factor of 10.

Power Break-up in the NoC Router

Buffers, 
46%

Clock Buffer, 
16%

Arbiter, 3%

Crossbar, 
35% Crossbar

54%

Buffers
15%

Misc.
31%

Area profile of a generic NoC Router[2] [2]

2. S.R.Vangal, et al., “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS”, IEEE J. Solid-State Circuits, Vol. 43, no. 1, 
January 2008.
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Crossbar Switch
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Input Buffers

Adaptive link buffers
Upstream

Router

iDEALiDEAL –– IInternter--router router DDualual--function function EEnergy and nergy and AArearea--
efficient efficient LLinks for inks for NoCNoC architecturesarchitectures

Reduced router 
buffer size
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iDEALiDEAL –– IInternter--router router DDualual--function function EEnergy and nergy and AArearea--
efficient efficient LLinks for inks for NoCNoC architecturesarchitectures

iDEAL Methodology

- Reduce the number of router buffers                            
(power and area savings) 

- Use adaptive link buffers to store data along the links when required        
(create more storage)

- Dynamic buffer allocation within the router buffers 
(to sustain  performance)

iDEAL Methodology

- Reduce the number of router buffers                            
(power and area savings) 

- Use adaptive link buffers to store data along the links when required        
(create more storage)

- Dynamic buffer allocation within the router buffers 
(to sustain  performance)
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Input Port 
of              

Router B

Output 
Port of 

Router A

Conventional (RepeaterConventional (Repeater--Inserted) LinksInserted) Links
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Input Port 
of               

Router B

Output 
Port of 

Router A

iDEALiDEAL –– Link Buffer Design Link Buffer Design (1/2)(1/2)

Control block Control block
Congestion
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Control block

iDEALiDEAL –– Link Buffer DesignLink Buffer Design (2/2)(2/2)

Functions as a conventional repeater 
when there is no congestion.

Control block is turned ‘OFF’.

Control block

Repeater tri-stated and holds the 
sampled value, during congestion.

Control block is turned ‘ON’.
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Control BlockControl Block

- Uses double-sampling technique2 for stable error-free operation
under varying frequencies

- Power consumption (about 6 µW when enabled)

- Uses double-sampling technique2 for stable error-free operation
under varying frequencies

- Power consumption (about 6 µW when enabled)
2. M.Nicolaidis, “Time redundancy based soft-error tolerance to rescue nanometer technologies”, Proc. 17th IEEE VLSI Test 
Symposium, San Diego, USA, April 25-30, 1999, pp. 86 – 94.
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DualDual--function Linkfunction Link
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Cycle 1
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Cycle 3
Data-In
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Statically Allocated Router BufferStatically Allocated Router Buffer

v

Flit 1

Flit r

VC State 
Table

Flit 1

Flit r

D
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U
X M
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vc 1

vc v

VCID

VC CROVCOPWPRP Status

Congestion
Control

C*

Credit Return VC State
Table

Input Port P
• Static buffer allocation

- Fixed number of buffers per 
VC

- HoL blocking

RP = read pointer, WP = write pointer, OP = output port, OVC = output VC, CR = credits, C* = congestion
Status = status of the VC (idle, waiting, RC, VA, SA, ST)



15

Dynamically Allocated Router Buffer Dynamically Allocated Router Buffer (1/2)(1/2)
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• Dynamic buffer allocation

- Approximately (z + c)/v buffers
per VC (z = router buffers, c =
channel buffers, v = # of VCs)

RP = read pointer, WP = write pointer, OP = output port, OVC = output VC, CR = credits, C* = congestion
Status = status of the VC (idle, waiting, RC, VA, SA, ST)
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Dynamically Allocated Router Buffer Dynamically Allocated Router Buffer (2/2)(2/2)

• Example illustrating Dynamic buffer allocation in iDEAL
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RP = read pointer, WP = write pointer, OP = output port, OVC = output VC, CR = credits, C* = congestion
Status = status of the VC (idle, waiting, RC, VA, SA, ST)
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Performance EvaluationPerformance Evaluation

• Evaluated on a cycle-accurate on-chip network simulator

• Simulated 8 x 8 Mesh and 8 x 8 Folded Torus topologies

• Synthetic benchmarks such as uniform, and non-uniform workloads 
(Butterfly, Complement, Perfect Shuffle, Matrix Transpose, Bit Reversal) as 
well as SPLASH-2 suite benchmarks (FFT, LU, MP3D, WATER, RADIX) were 
evaluated

• Parameters evaluated include throughput, latency and overall network 
power 

• Considered 5 different configurations – (vnV – rnR – cnC) 
(nV = No. of VCs per input port, nR = No. of router buffers per VC, nC = 
number of channel buffers)
– Baseline = 440
– 434, 428, 344, 531



18

Baseline NoC Router with 4 VCs per 
input port, 4 128-bit router buffers per 

VC and no adaptive link buffers

- x

+ y

- y

+ x

v4-r4-c0

Adaptive Link buffers 
along the                   

inter-router link
Reduced router 

buffer size

Case with 4 VCs per input port, 2 128-bit 
router buffers per VC and 8 adaptive link 

buffers - v4-r2-c8

Different Test Cases ConsideredDifferent Test Cases Considered
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vnV –
rnR –
cnC

Buffer 
Power 
(mW)

Mesh                     
Link + 
Control  

Power (mW)

Folded 
Torus                     
Link + 
Control  

Power (mW)

Mesh           
Total Power       

(Buffer + 
Link)
(mW)

% 
Change

Folded 
Torus        
Total 

Power  
(Buffer + 

Link)
(mW)

% 
Change

v4-r4-c0 19.54 2.45 + 0 3.94 + 0 21.99 - 23.48 -

v4-r3-c4 14.51 2.90 + 0.0012 4.39 + 0.0012 17.42 -20.78 18.91 -19.46

v4-r2-c8 11.57 3.55 + 0.0200 5.04 + 0.0200 15.14 -31.15 16.63 -29.17

v3-r4-c4 15.09 2.90 + 0.0012 4.39 + 0.0012 18.00 -18.14 19.49 -16.99

v3-r3-c7 12.56 3.49 + 0.0180 4.98 + 0.0180 16.06 -26.96 17.55 -25.25

Power Estimation Power Estimation –– Summary Summary 
with values from Synopsys Design Compilerwith values from Synopsys Design Compiler

nV = number of VCs per input port, nR = number of router buffers per VC, nC = number of link buffers

v4-r2-c8   11.57  3.55 + 0.02   5.04 + 0.02     15.14         -31.15        16.63      -29.17v4-r2-c8   11.57  3.55 + 0.02   5.04 + 0.02     15.14         -31.15        16.63      -29.17
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vnV – rnR -
cnC

Buffer Area 
(μm2)

Link Repeater 
Area (μm2)

Total Buffer + Link 
Area (μm2)

% Change

v4-r4-c0 81,407 8,960 90,367 -

v4-r3-c4 63,991 6,656 70,647 -21.8

v4-r2-c8 48,066 10,240 58,306 -35.5

v3-r4-c4 63,250 6,656 69,906 -22.6

v3-r3-c7 50,373 9,344 59,717 -34.0

Area Estimation Area Estimation –– Summary Summary 
with values from Synopsys Design Compilerwith values from Synopsys Design Compiler

v4-r2-c8         48,066                 10,240                     58,306                   -35.5v4-r2-c8         48,066                 10,240                     58,306                   -35.5

nV = number of VCs per input port, nR = number of router buffers per VC, nC = number of link buffers
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Saturation Throughput (8x8 Mesh) - 
Uniform Traffic
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• Uniformly distributed traffic
⇒ Only about 3% drop in throughput for the v4-r2-c8 case

(428 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

• Uniformly distributed traffic
⇒ Only about 3% drop in throughput for the v4-r2-c8 case

(428 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

Network Simulation Results                Network Simulation Results                (1/6)(1/6)



22

Total Power (8x8 Mesh) - Uniform Traffic
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Total Power (8x8 Folded torus) - Uniform Traffic
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• Total power consumed for a network load of 0.5
⇒ Nearly 30% savings in overall network power for the 

v4-r2-c8 case

(428 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

• Total power consumed for a network load of 0.5
⇒ Nearly 30% savings in overall network power for the 

v4-r2-c8 case

(428 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

Network Simulation Results                Network Simulation Results                (2/6)(2/6)
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• Reduction in power for all configurations, under all traffic patterns, compared 
to the baseline (440)
• For example, under Complement traffic the 4-2-8 configuration achieves 40% 
savings

• Reduction in power for all configurations, under all traffic patterns, compared 
to the baseline (440)
• For example, under Complement traffic the 4-2-8 configuration achieves 40% 
savings

Buffer Power Buffer Power –– Synthetic Traffic    Synthetic Traffic    (3/6)(3/6)
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• No significant decrease in throughput under any traffic pattern, using Dynamic 
allocation
• No significant decrease in throughput under any traffic pattern, using Dynamic 
allocation

Throughput Throughput –– Synthetic Traffic    Synthetic Traffic    (4/6)(4/6)
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Simulation results for the SPLASHSimulation results for the SPLASH--2 suite  2 suite  (5/6)(5/6)

Overall Network Power (8x8 Mesh) Execution Time (8x8 Mesh)

• Nearly 30% savings in overall network power for the 
v4-r2-c8 case with only about 1% drop in performance

(v4-r2-c8 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

• Nearly 30% savings in overall network power for the 
v4-r2-c8 case with only about 1% drop in performance

(v4-r2-c8 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)
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Aggressive SpeculationAggressive Speculation (6/6)(6/6)

• Aggressive speculation by increasing the 
number of credits available to 8

• Additional credits are accounted for by the 
link buffers

⇒ Saturation throughput improves by 10% 
for the 428 case

• Aggressive speculation by increasing the 
number of credits available to 8

• Additional credits are accounted for by the 
link buffers

⇒ Saturation throughput improves by 10% 
for the 428 case

Saturation Throughput (8x8 Folded Torus) - 
Uniform Traffic
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Average Latency (8x8 Folded Torus) - 
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Design Headroom for NBTIDesign Headroom for NBTI--related issuesrelated issues

• Negative Bias Temperature Instability (NBTI) affects PMOS gates 
with a ‘0’ input. Additional circuits may be employed to change 
the input of ‘Idle’ PMOS gates to ‘1’ 3.

• iDEAL architecture ‘moves some of the buffers from the router to 
the links’ and provides a low-power area-efficient solution with
– Reduced power density and temperature in the routers, thereby 

alleviating NBTI-related degradation
– Sufficient design headroom for the Thermal Design Power (TDP) of

the auxiliary circuits 
TDPNoC ≤ Psaved

TDPNoC = K x Sr
(Psaved = power reduction achieved by iDEAL, K = impact of the area on the TDP, 

Sr = area reduction achieved by iDEAL)

3. J.Abella, X.Vera and A.Gonzalez, “Penelope: The NBTI-aware processor”, Proc. 40th Annual ACM/IEEE Intl. Symp. Micro Arch. 
(MICRO-40), Chicago, IL, USA, December 1-5, 2007, pp. 85 – 96.



28

ConclusionConclusion
•• iDEALiDEAL architecture provides a low-power area-efficient 

solution for NoCs, by reducing power consumption 
through circuit-level and architecture-level techniques.

• Simulation results show that by reducing the buffer size 
in half, a 30% savings in overall network power30% savings in overall network power
and 35% savings in overall area35% savings in overall area is achieved. 

• There is only a marginal 1-3% drop in performance, 
under dynamic buffer allocation. (note: Performance 
degradation has been solved already)

• Further, the significant reduction in power and area 
provide sufficient headroom for monitoring NBTI effects.
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Questions?
kodi@ohio.edu


