Adaptive Inter-router Links for Low-Power, Area-Efficient and Reliable Network-on-Chip (NoC) Architectures

Avinash Karanth Kodi[†], Ashwini Sarathy^{*}, Ahmed Louri^{*} and Janet Wang^{*}

[†]Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701 ^{*}Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721 E-mail: <u>kodi@ohio.edu</u>, <u>{sarathya, louri, wml} @ece.arizona.edu</u>

Speaker : Jin Sun

Dept. of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721

<u>Sponsored:</u> National Science Foundation (NSF) grants CCR-0538945 and ECCS-0725765 (at the High Performance Computing Architectures and Technologies Lab, University of Arizona, Tucson)

Talk Outline

- Motivation
- iDEAL inter-router Dual-function Energy and Area-efficient Links for NoC architectures
 - Dual-function links
 - Design of static & dynamic router buffer
- Performance Evaluation
 - Power and area estimation
 - Simulation results (power, throughput)
 - Design headroom for Negative Bias Temperature Instability (NBTI) related reliability issues
- Conclusion

Motivation for Networks-on-Chips (1/2)

Technology scaling - Increase in transistor density on a single chip

•Chip MultiProcessors (CMPs) and MultiProcessor System-on-Chip (MPSoC) architectures

- Challenges in future scaling of CMPs and MPSoCs :
 - Overcoming the increasing wire delays
 - Minimizing the power consumption

Motivation for Networks-on-Chips (2/2)

Wire delay constraint with decreasing feature size

^{1. 1997} Roadmap of the Semiconductor Industry Association

2. W. J. Dally and J. W. Poulton, *Digital Systems Engineering*, Cambridge University Press, NY, USA, 2001.

The Network-on-Chip (NoC) Paradigm

Significance of Router Buffers in NoCs

Recent NSF-sponsored workshop on On-Chip Interconnection Networks^[1]:

- "The most important technology constraint for on-chip networks is power consumption".
- Power consumption of OCINs implemented with current techniques exceeds expected needs by a factor of 10.

Power Break-up in the NoC Router ^[2]

Area profile of a generic NoC Router ^[2]

6

1. J.D.Owens, W.J.Dally, R.Ho, D.N.Jayasimha, S.W.Keckler and L.S.Peh, "Research Challenges for On-Chip Interconnection Networks", IEEE Micro, vol. 27, no. 5, pp. 96 – 108, September-October 2007.

2. S.R.Vangal, *et al.*, "An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS", IEEE J. Solid-State Circuits, Vol. 43, no. 1, January 2008.

iDEAL – Inter-router Dual-function Energy and Areaefficient Links for NoC architectures

iDEAL – Inter-router Dual-function Energy and Areaefficient Links for NoC architectures

iDEAL Methodology

- Reduce the number of router buffers (power and area savings)

- Use adaptive link buffers to store data along the links when required (create more storage)

- Dynamic buffer allocation within the router buffers (to sustain performance)

iDEAL – Link Buffer Design (2/2) **Control block Control block**

Functions as a conventional repeater when there is no congestion.

Control block is turned 'OFF'.

Repeater tri-stated and holds the sampled value, during congestion.

Control block is turned 'ON'.

Dual-function Link

Statically Allocated Router Buffer

RP = read pointer, WP = write pointer, OP = output port, OVC = output VC, CR = credits, C* = congestion Status = status of the VC (idle, waiting, RC, VA, SA, ST)

Dynamically Allocated Router Buffer (1/2)

RP = read pointer, WP = write pointer, OP = output port, OVC = output VC, CR = credits, $C^* = congestion Status = status of the VC (idle, waiting, RC, VA, SA, ST)$

Dynamically Allocated Router Buffer (2/2)

• Example illustrating Dynamic buffer allocation in iDEAL

RP = read pointer, WP = write pointer, OP = output port, OVC = output VC, CR = credits, $C^* = congestion Status = status of the VC (idle, waiting, RC, VA, SA, ST)$

Performance Evaluation

- Evaluated on a cycle-accurate on-chip network simulator
- Simulated 8 x 8 Mesh and 8 x 8 Folded Torus topologies
- Synthetic benchmarks such as uniform, and non-uniform workloads (Butterfly, Complement, Perfect Shuffle, Matrix Transpose, Bit Reversal) as well as SPLASH-2 suite benchmarks (FFT, LU, MP3D, WATER, RADIX) were evaluated
- Parameters evaluated include throughput, latency and overall network power
- Considered 5 different configurations $(vn_v rn_R cn_C)$ $(n_v = No. of VCs per input port, n_R = No. of router buffers per VC, n_C = number of channel buffers)$
 - Baseline = 440
 - 434, 428, 344, 531

Different Test Cases Considered

Power Estimation – Summary with values from Synopsys Design Compiler

vn _v – rn _R – cn _c	Buffer Power (mW)	Mesh Link + Control Power (mW)	Folded Torus Link + Control Power (mW)	Mesh Total Power (Buffer + Link) (mW)	% Change	Folded Torus Total Power (Buffer + Link) (mW)	% Change
v4-r4-c0	19.54	2.45 + 0	3.94 + 0	21.99	-	23.48	-
v4-r3-c4	14.51	2.90 + 0.0012	4.39 + 0.0012	17.42	-20.78	18.91	-19.46
v4-r2-c8	11.57	3.55 + 0.02	2 5.04 + 0.02	2 15.14	-31.15	16.63	-29.17
v3-r4-c4	15.09	2.90 + 0.0012	4.39 + 0.0012	18.00	-18.14	19.49	-16.99
v3-r3-c7	12.56	3.49 + 0.0180	4.98 + 0.0180	16.06	-26.96	17.55	-25.25

 n_{V} = number of VCs per input port, n_{R} = number of router buffers per VC, n_{C} = number of link buffers

Area Estimation – Summary with values from Synopsys Design Compiler

vn _v – rn _R - cn _c	Buffer Area (µm²)	Link Repeater Area (µm²)	Total Buffer + Link Area (μm²)	% Change
v4-r4-c0	81,407	8,960	90,367	-
v4-r3-c4	63,991	6,656	70,647	-21.8
v4-r2-c8	48,066	10,240	58,306	-35.5
v3-r4-c4	63,250	6,656	69,906	-22.6
v3-r3-c7	50,373	9,344	59,717	-34.0

 n_V = number of VCs per input port, n_R = number of router buffers per VC, n_C = number of link buffers

Network Simulation Results

(1/6)

Uniformly distributed traffic
⇒ Only about 3% drop in throughput for the v4-r2-c8 case
(428 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

Network Simulation Results

(2/6)

Total power consumed for a network load of 0.5
> Nearly 30% savings in overall network power for the v4-r2-c8 case

(428 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

Buffer Power – Synthetic Traffic (3/6)

Buffer Power (8x8 Mesh) at an Offered Load = 0.5

- Reduction in power for all configurations, under all traffic patterns, compared to the baseline (440)
- For example, under Complement traffic the 4-2-8 configuration achieves 40% savings

• No significant decrease in throughput under any traffic pattern, using Dynamic allocation

Simulation results for the SPLASH-2 suite (5/6)

 Nearly 30% savings in overall network power for the v4-r2-c8 case with only about 1% drop in performance

(v4-r2-c8 = 4 VCs per port, 2 router buffers per VC, 8 link buffers)

Aggressive Speculation

- Aggressive speculation by increasing the number of credits available to 8
- Additional credits are accounted for by the link buffers

 \Rightarrow Saturation throughput improves by 10% for the 428 case

Design Headroom for NBTI-related issues

- Negative Bias Temperature Instability (NBTI) affects PMOS gates with a '0' input. Additional circuits may be employed to change the input of 'Idle' PMOS gates to '1' ³.
- iDEAL architecture 'moves some of the buffers from the router to the links' and provides a low-power area-efficient solution with
 - Reduced power density and temperature in the routers, thereby alleviating NBTI-related degradation
 - Sufficient design headroom for the Thermal Design Power (TDP) of the auxiliary circuits

$$\begin{split} \text{TDP}_{\text{NoC}} &\leq \text{P}_{\text{saved}} \\ \text{TDP}_{\text{NoC}} &= \text{K x S}_{\text{r}} \\ \text{(P}_{\text{saved}} &= \text{power reduction achieved by iDEAL, K} &= \text{impact of the area on the TDP,} \\ \text{S}_{\text{r}} &= \text{area reduction achieved by iDEAL)} \end{split}$$

3. J.Abella, X.Vera and A.Gonzalez, "Penelope: The NBTI-aware processor", Proc. 40th Annual ACM/IEEE Intl. Symp. Micro Arch. (MICRO-40), Chicago, IL, USA, December 1-5, 2007, pp. 85 – 96.

Conclusion

- **iDEAL** architecture provides a low-power area-efficient solution for NoCs, by reducing power consumption through circuit-level and architecture-level techniques.
- Simulation results show that by reducing the buffer size in half, a 30% savings in overall network power and 35% savings in overall area is achieved.
- There is only a marginal 1-3% drop in performance, under dynamic buffer allocation. (note: Performance degradation has been solved already)
- Further, the significant reduction in power and area provide sufficient headroom for monitoring NBTI effects.

Questions? kodi@ohio.edu