Ultra Low-Power ANSI S1.11 Filter Bank for Digital Hearing Aids

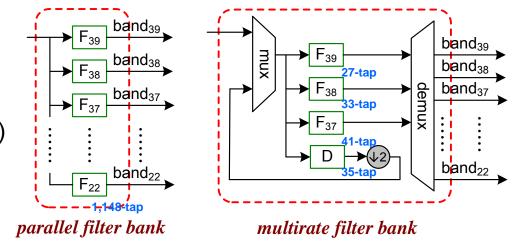
Yu-Ting Kuo

VLSI Signal Processing Lab

National Chiao Tung University, Taiwan 2009/01/20

Outline

- Introduction
- Algorithm & architecture
- Implementation results
- Conclusions


Introduction

- Digital hearing aid
 - Auditory compensation (main block)
 - Filter bank
 - Dynamic range compression
 - ...
- ANSI S1.11 filter bank (standard 1/3-octave bands)
 - Popular in acoustic/speech applications
 - Well match the frequency analysis in human hearing systems
 - But high computation complexity
 (1,488-tap FIR filter required for a straightforward implementation)

So, we designed a low-power ANSI S1.11 filter bank to meet the stringent power constraints of hearing aids

Filter Bank Algorithm Design

- Proposed multirate filter bank
 - ANSI S1.11 1/3-octave class-2 filters
 - 22nd ~ 39th bands (~8980Hz)
 - 24KHz sampling rate
- Computation complexity

		IIR	FIR	
Parallel	# MPY	192	3,270	
	# ADD	165	6,520	96% reduction
Multirate	# MPY	102	<u>120</u>	←
	# ADD	90	<u>233</u>	

Architecture Design

Block diagram

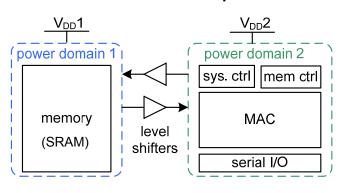
data paths control signals

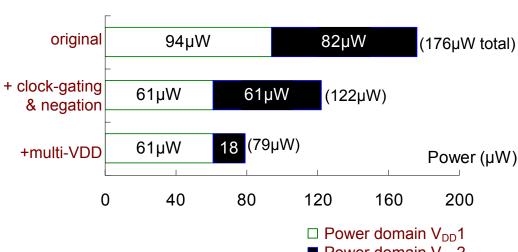
sdi
sdisel sdock

clk rst sdisel sdock

sdisel sdick

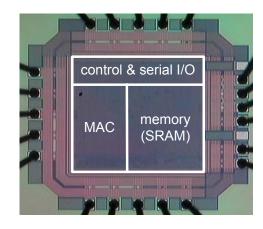
sdisel sdock


sdoc


Low-power optimizations

Clock gating

Selective coefficient negation


Multi-VDD implementation

Results

- Silicon Implementation
 - □ TSMC 0.13µm CMOS tech.
 - Cell library from Artisan
 - 6MHz clock frequency (for 24KHz sampling rate)

Sub-modules	Gate	
Sub-modules	count	
MAC	2,847	
memory	5,594	
system controller	1,010	
memory controller	301	
serial I/O	1,103	

Comparison

	# bands	Process (µm)	V _{DD} (V)	Power (µW)	P _{normailzed} *
[5]	7	0.70	1.55	471	7.49
[6]	8	0.18	1.6	316	16.05
[3]	16	0.35	1.1	248	6.85
Proposed	18	0.13	1.2/0.6	79	4.39

*
$$P_{normalized} = Power \times \left(\frac{0.13}{Process}\right) \times \left(\frac{1.2}{V_{DD}}\right)^2 \times \left(\frac{1}{\#bands}\right)$$

Conclusions

- An ultra low-power filter bank has been designed & implemented
 - ANSI S1.11 1/3-octave bands
 - Class-2 filter specification
 - 24KHz sampling rate
- It is optimized for low power at the algorithmic, architectural, and circuit levels
 - 96% multiplications saved with multirate algorithm
 - 55% power saved with architectural/circuit level optimizations (from 176 to 79 μW)
- The proposed design is suitable for hearing aids
 - Only 27~64% power of other filter banks (more energy-efficient)
 - □ The 1/3-octave bands match the human auditory characteristics