1D-16: A 52-mW 8.29mm² 19-mode LDPC Decoder Chip for Mobile WiMAX Applications

Xin-Yu Shih, Cheng-Zhou Zhan, Cheng-Hung Lin, An-Yeu (Andy) Wu

Graduate Institute of Electronics Engineering,
Department of Electrical Engineering,
National Taiwan University.

Jan. 20th, 2009

Motivation

- ☐ First introduced by Gallager in 1962. [1]
- ☐ Rediscovered by MacKay In 1995. [2]:
 - Excellent error-correcting performance near the Shannon limit.
 - Highly parallel decoding scheme.
- □ Become more popular in advanced communication systems (Mobile WiMAX) with advanced VLSI technology.

1D-16 PP 2

Low-Density Parity-Check Codes (LDPC)

☐ Parity check matrix : very sparse matrix

☐ Bipartite graph

1D-16 ______ PP.

Proposed Design Techniques

- ☐ Overlapped Operations of BNUs & CNUs
- □ New Early Termination Scheme
- ☐ Distributed Memory Banks

Mode

☐ Reconfigurable Architecture

CU: Counter Unit

AGU: Address Generator Unit

Efficient Checkerboard Layout Scheme (ECLS)

- ☐ Divided memory bank (architecture)
 - Activation of memory bank in need
 - Small address decoder inside memory
 - > Reduced power
- ☐ Distributed memory bank (physical)
 - > Evenly data transmission
 - > Lower routing complexity
 - > Reduced area

Comparison Table

	JSSC'02	ISCAS'05	TCAS-I'06	JSSC'06	This work
Multi-mode	No	No	No	7 modes	19 modes
Spec	(1024,512)	(2048,1732)	(1024,512)	(2048,128*k) k = 8~14	(96*k, 48*k) k = 6~24
Code Construction	Random	RS-based	QC-based	Turbo- Interleaved	QC-based
Technology	0.16um	0.18um	0.18um	0.18um	0.13um
Parallelism	Fully	Fully	Partial	Partial	Partial
Iterations	64	32	8	16	2 ~ 8
Chip Area	52.5 mm ²	17.64 mm ²	10.08 mm ²	14.3 mm ²	8.29 mm ²
Frequency	64 MHz	100 MHz	200 MHz	125 MHz	83.3 MHz
Throughput	1 Gbps	3.2 Gbps	985 Mbps	640 Mbps	30~111 Mbps
Power	690 mW	N/A	N/A	787 mW	52 mW

1D-16

Conclusion

- ☐ An efficient IC strategy with four design techniques and efficient checkerboard layout scheme (ECLS).
- ☐ Features of our LDPC decoder design :
 - ➤ Multi-mode design (19-mode)
 - ➤ Smaller chip area (8.29mm²)
 - ➤ Higher hardware utilization (50%→75%)
 - ➤ Lower decoding latency (68.75%)
 - ➤ Flexible decoding throughput (30Mbps~111Mbps)
 - ➤ Lower power consumption (52mW @ 83.3 MHz)

1D-16 PP. 7