A Delay-Optimized Universal FPGA Routing Architecture

Fudan Univ., China
Wu Fang
About the design

- A delay–optimized universal FPGA routing architecture is presented.
- Several kinds of routing strategy are used.
- The whole FPGA chip is highly repeatable.
- The signal delay is uniform and predictable among the total chip.
TILE Routing Architecture

- Input Multiplexer
- Output Multiplexer
- General Routing Box
- Long lines
- Multi-length Lines
- Single lines
Routing strategy

- Offset by sets to the top level of the routing resource

- Complementary hanged end-lines to the I/O routing resource

- Mux + Buffer architecture as routing switchesc
Modeling and Simulation

- RC parasitic parameters of the metal line are drawn from layout and taken into consideration to set up the simulation modules.
Layout

- SMIC 0.18um CMOS process and technology.
- Array of logic TILE is 20×30.
- The total layout area is $6.5\text{mm} \times 6.8\text{mm}$
- Routing resource costs approximately 60% of the total area.
Test Result

- The linear relation between the number of TILEs that the length-6 lines or long lines span and the signal delay
- Long lines are better than length-6 lines at long distance signal transmission.