Low-Power CMOS Transceiver Circuits for 60GHz Band Millimeter-wave Impulse Radio

Ahmet Oncu and Minoru Fujishima
School of Frontier Sciences
The University of Tokyo

ASP-DAC 2009
University LSI Design Contest
Yokohama, Japan, January 20, 2009
Proposed Low-power 60GHz Impulse Radio

• Low-power, short-range, several Gbps wireless communication will be on demand.

• Conventional millimeter-wave CMOS transceivers contain power hungry building blocks.

---

1. Power-hungry building blocks are removed.
2. Pulse modulation is used.
1. First time a high-speed ASK modulator is designed in CMOS.
2. Reduced architecture is applied.
3. Data-Rate and isolation is maximized at 60GHz.
60GHz Pulse Receiver Design

This work

CMOS baseband logic

Millimeter-wave pulses

Detector

DC-offset canceller

Buffer

Data output

VoutP

VoutM

mm-Wave pulse

VIN

Dummy

NLA (detector)

Limiting Amplifier

CMOS

VoutP

Data output

VoutM

ANT

...1 1 0 1

...1101

LNA

LA

...1

...1101
Micrograph of the fabricated 8Gbps 60GHz ASK modulator chip

Micrograph of the fabricated 19.2mW 2Gbps CMOS 60GHz pulse receiver chip

1Poly 6Metal 90nm CMOS Process
Waveforms for 2Gbps Data Rate

60GHz input pulse

Receiver output

2Gbps waveforms

0110101 0010110 1 0 100 1011010 10010110 101001
Conclusion

- Low-power CMOS Gbps mmW wireless pulse communication is proposed.
- High-Speed millimeter-wave ASK modulator circuit is proposed in CMOS.
- 8Gbps millimeter-wave ASK Modulator is successfully fabricated in 1P6M standard 90nm CMOS.
- The product of maximum data rate and isolation of this modulator is 170G which is the highest value.
- It does not consume DC power.
- Low-power Gbps 60GHz pulse receiver architecture is proposed.
- A 19.2mW 2Gbps pulse receiver prototype is successfully designed, fabricated and tested.
- 60GHz mmW CMOS Impulse Radio will open up new applications in the near future.