Department of Electronic and Computer Engineering

HKUST The Hong Kong University of Science and Technology

An Inductor-less MPPT Design for Light Energy Harvesting Systems

Authors: Hui Shao, Chi-Ying Tsui and Wing-Hung Ki

Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology Hong Kong SAR., P. R. China

Introduction

Energy harvesting techniques – to extend the device lifetime for micro-system designs Solar energy: The most popular because of its ubiquitous spreading, high power density, etc. Previous works of solar systems Maximum Power Point Tracking (MPPT) > Extract maximum power from solar cell ► MPPT using DC-DC converter P-V curve > Inductors are costly Strong sunlight assumption I-V curve > Low light condition PV cells output Voltage » Voltage step up needed Our work: Inductor-less MPPT Designation

System Description

System Operating Behavior

System output current is determined by I_{PH} and I_{loss}

$$I_{CP,O} = \frac{1}{N+1} \{ (1 - \frac{C_E}{\alpha}) [I_{PH}(V_{PH}) - I_{amp}] - (\sigma + \frac{C_E\beta}{\alpha}) f_{clk} \}$$

System MPP is usually different from PV cells' MPP

System Maximum Output Power Control

Experimental Results

Test chip was fabricated in AMS 0.35µm process

- Source: 2 mono-crystalline solar cells (area: 6cm x 6cm)
- Charge pump: 1-stage voltage doubler
- ► Load: a 125mAh Li-ion rechargeable battery

Die micro-photograph of the proposed system

Measurement Results

Operation of the optimal power tracking unit (OPTU)

- Disable OPTU: Tune f_{clk} to check the system ideal MPP
- ► Enable OPTU: Auto-track the system MPP well

System output current vs. charge pump switching frequency

Experimental Results

Comparison of system output power & power efficiency at the system ideal MPP and when applying MPP tracking control scheme

light intensity	system ideal maximum P _{ouт} / ŋ	system P _{out} / դ with MPPT
368 LUX	106.63 μW / 53.65 %	100.72 μW / 50.65 %
706 LUX	332.99 μW / 64.60 %	327.49 μW / 63.24 %
1141 LUX	533.02 μW / 67.22 %	528.76 μW / 67.08 %
1734 LUX	779.24 μW / 66.95 %	775.50 μW / 66.82 %

Measurement Results

- Under same light intensity
 - ► V_{VCO} oscillates around the system MPP
- When light intensity changes
 - ► V_{VCO} tracks the light change and goes to the new MPP

System MPP tracking when light intensity changes

