ASP-DAC 2009 University LSI Design Contest

Circuit Design using Stripe-Shaped PMELA TFT on Glass

K. Ikai¹, J. Kim¹, M. Ikeda^{1,2}, K. Asada^{1,2}

 Dept. of Electronic Engineering,
 VLSI Design and Education Center (VDEC), University of Tokyo

1

Background

System-on-Glass (SOG)

Integrate the peripheral functions on glass substrate

PMELA method

Promising technique to realize SOG
 Compatible with conventional TFT processes

- Grow large Si grains with position control
- Large Si grains are formed periodically
 Designers need to place TFTs on the areas

Main issues and targets

<PMELA process> Have to place TFTs periodically <Glass substrate> Smaller ground capacitances Than Si substrate

gate

alass substrate

- Develop a design environment for automatically placing TFTs periodically on large Si grain areas
- Ground/parasitic capacitance modeling for postlayout simulation

Si thin film

Placing TFTs periodically

<standard cell's layout>

<successfully worked>

- Large crystallized Si area : 32um pitch
 - Standard cell's unit cell width are also designed as 32um
 - Poly for vertical, Metal 1 for horizontal wiring
 - Pins are placed above/below the Power/Gnd lines
- TFTs are successfully placed on the large crystallized area

Simulation vs Measurement results

- Assumed the field oxide is very thick
- VCOs' measurement results
 - □ Error: < 70% (~1.5V), < 40% (~3V) (VDD=3V)
 - Averaged data : error is less than 15%
 - The developed simulation environment is enough accurate for digital circuit design

Our Design is presented at poster session 1D-8.

Thank you.

