UNIVERSITY OF MINNESOTA

Congestion-Aware Power Grid
Optimization for 3D circuits Using MIM
and CMOS Decoupling Capacitors

Pinggiang Zhou
Karthikk Sridharan
Sachin S. Sapatnekar

University of Minnesota



UNIVERSITY OF MINNESOTA

Outline

H Motivation

B A new CAD solution to 3D power grid optimization
B Experimental results
B Summary



UNIVERSITY OF MINNESOTA

3D IC Design
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3D Integration: Driving forces
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Power Supply Integrity in 3D
e Higher current density, faster current

300 -

transients worsen supply noise _ —
. pp y . EZSO
e Greater challenge in 3D due to via < e
resistance, limited number of supply pins ™~
S5 150
Pins £100
‘ 0 . . . .
3D 2005 2010 2015 2020 2025
2D Year
Power bottleneck: a major problem for 3D
L R 4 v
M —e . — ad
| Digital Logic] \| Digital Logic |
Vad o  Decap— : : ||~ - 3D Circuit 0.85V4q
|
L R | gyl
P

.
P §
T Id Gnd



UNIVERSITY OF MINNESOTA
Traditional power delivery

Requirements
— V44» GND signals should be at correct levels (low V drop)

— Electromigration constraints
« Current density must never exceed a specification
 For each wire, l./w; < J

— dl/dt constraints
* Need to manage dl/dt to reduce inductive effects

Techniques for meeting constraints . 9. . o
— Widening wires
— Using appropriate topologies
— Adding decoupling capacitances
Already challenged for 2D technologles
— Reliable power delivery hard
— Decaps get leaky

New CAD approaches necessary

spec




UNIVERSITY OF MINNESOTA

Decoupling capacitances (decaps)

® The most powerful method to reduce transient noise
® Conventional decap technology: CMOS decap

® New considerations for CMOS decaps in 3D
— Compete for area on device layer with landing pads of 3D vias
— May increase footprint size
— Get more leaky, due to T-leakage feedback

B

Block CMOS decap

Any other option?
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MIM decaps
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Decap *Capacitance *Leakage density Congestion
density (fF/um?2) (Alcm?)
CMOS 17.3 1.45e-4
MIM 8.0 3.2e-8 routing blockage

* Numbers deduced from Roberts et al., IEDMO5 and PTM simulations
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Our Contributions

® Apply newer decap technology - MIM decap

® Develop CAD solutions for inserting both MIM and
CMOS decaps:

— Sequence of linear progamming based problem formulation
— Linearized noise model based on adjoint sensitivity analysis
— 3D congestion analysis and linear congestion model
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Overall Algorithm Flow

3D layout info. Technology parameters
Initial
setup
Build 3D power grid
/ Transient power grid analysis y
Optimization
loop | Noise metricS #0 ? |

LP based allocation of CMOS and MIM decaps
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Power network modeling and analysis

® Power Network Modeling
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® Modified Nodal Analysis
G x(t) + C x(t) = b(t)
- X(t): time varying vector of voltages and currents

- b(t): time varying vector of independent current sources
® Adjoint Sensitivity Analysis

- Based on Tellegen’s theorem: the instantaneous power in any circuit is zero

- An approach to calculate the sensitivity of one objective function w.r.t all the
parameters in the circuit

11
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Power Noise Metric S

* Noise: optimize the integral of noise violation over time
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Decap optimization: problem formulation
metric power

minimize a S(x, , y, ) + (1-a) P(X,, Y, )

Su bJeCt (0] Decap resource
K constraint
O < X < CCMOS
k Congestion
0<y, <Cl,

Congestion in grid k < 1 crid K

- X, : CMOS decap added to grid k
- ¥, - MIM decap added to grid k

Nonlinear optimization problem!

13
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Sequence of linear programs: formulation

® Objective

min a AS + (1-a) AP
= AS =), (a,Ax, + b, Ay, ) = change of violation area S
= AP =, (c,Ax, +d, Ay, ) = change in leakage
= Ax, : Newly added CMOS decap to grid k
= Ay, : Newly added MIM decap to grid k
® Constraints Grid k
= Congestion constraint /

ACong, <y-Cong,

= Decap resource constraint

O < AXk < min{ACMOS1CgMOS}

0 <Ay, <min{A,,,,,C5,}

14
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Congestion Analysis and Linear Model

® 3D congestion analysis

= Extension of “Estimation routing congestion using probabilistic
analysis” , [Lou, et al. TCAD’02].

{F(p,q,r)= F(p-Lq,r)+F(p,ga-1r)+F(p,q,r-1)

F(pl)=F@1gl)=F@Lr)=1 i

®Linear congestion model

AW,
ACong, = ( “LY+ A, - Ay,

icR,.izk Cap,
- Z (ﬂ', ) A.y,)
ieR,

- Ay;: the small MIM decap added to grid i

\

- Aw,;: the # of routes moved out of grid i to grid k caused by Ay, Grid /

- Cap;: the capacity of grid k
[Details in the paper]

15
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Experimental Setup

® 90nm technology node

® 6 metal layers for each 2D tier

® Supply voltage: 1.2V

® Voltage drop threshold: 0.12 V (10%)

® 3D Benchmarks

Ckt # Nodes Worst V droop # nodes with Violation Area S
(V) noise violations (V - ns)

Ibm123 18,634 0.135 3330 13.739
IbmO05 12,026 0.122 1359 72.260
iIbmO08 17,030 0.125 3191 41.305
ibm10 29,262 0.159 5935 91.286
iIbm18 75,042 0.163 6392 108.649

16
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Experimental Results

® Comparison of three optimization strategies

Ckt CMOS only MIM only CMOS + MIM
VNs S Decap Decap

(V- ns) (pF) (pF) (pF)
Ibm123 | 368 | 0.023 |24 564 (WA 607 628
Ibm05 | 24 | 0.049 550 546
iomos | 31 | 0.010 ﬂ!li;ll C 768 774
ibm10 | 351 | 0.182 511 520
ibm18 | 130 | 0.071 |2zl . 812 826

- VNs: number of violating nodes

- Lkg: leakage current

- maxC: maximum increment of congestion
- avgC: average increment of congestion

CMOS+MIM can achieve a good tradeoff between leakage power and
routing congestion

17
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Experimental results: ibm18 (cont.)
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Experimental Results (cont.)

® Optimization results of power grid densities

liuw Violation | Decap | Lkg | maxC | avgC | Time

- Area S (PF) | mAY (%) | (%) | (3)

Cases Power #Nodes # nodes
Grid with noise
Density violations

Casel | Normal | 18634 3330
Case2 | Denser | 36433 4210

Case3 | Densest | 72114 4671

113739 | 628 | 11| 835 | 1.66 | 42.6
2615 | 488 | 06 |31.27| 4.75 | 45.0
| 1482 | 229 |03 [5841| 762 | 531

- Lkg: leakage current
- maxC: maximum increment of congestion
- avgC: average increment of congestion

1. Denser power grid —> smaller voltage droop
2. Denser power grid —> increased congestion

19
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Summary

Power delivery into a 3D chip is a critical problem
for next-generation designs

MIM decap is an efficient option for 3D power grid
optimization

A LP based decap allocation approach using both
MIM and CMOS decaps

Our algorithm can also be used to solve the 2D
power grid optimization problem

20
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Thank You!
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