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Path Identification Under Variability

• Identification is challenging under process 
and environmental variations
– Delay of a path varies for each point in variation space

• Useful in different applications
– At-speed test 
– Post-silicon repair of timing failures
– Incremental timing-driven optimization
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• [Wang et al, TCAD’ 04]
– Finds M paths with highest probability of violating a timing constraint
– High error for small M and simplified Statistical Static Timing 

Analysis

• [Zolotov et al, ICCAD’08] 
– Finds M paths that best “represent” the variation space in which 

timing violation occurs (Test Quality Metric)
– Uses branch-and-bound for path pruning
– Limited number of paths are expected to predict chip failure during 

testing

• [Heloue et al, ICCAD’08]
– Finds longest paths for each point in the variation space
– No notion of timing constraint

Some Previous Works
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Contributions
• Analytical bounds for “violation-probability” of a 

path
– No assumption on technique used for variation 

analysis
– Incremental update (in constant time) if path 

segment is extended to a larger one

• Demonstrate the use of bounds to find M paths 
with highest “timing-violation probability”
– Paths found efficiently with high accuracy
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Bound-Based Path Extraction
• Can we identify timing-violating paths 

efficiently?
– Pick up promising nodes/edges to build paths
– Use lower/upper bounds to prune redundant paths

• Difficulties
– How to evaluate the importance of nodes/edges?
– How to efficiently and accurately compute the 

lower/upper bounds of the connected edges?
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• Probability that a node/edge/path-segment will be subset 
of a longer path which might have a delay larger than a 
timing constraint

• Dni, Deij, Dpi represent delay of longest paths going 
through ni, eij, pi and are all random variables

Violation Probability of A Node/Edge/Path
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• Given a timing-graph with nodes N and 
edges E, identify M paths with highest 
violation probabilities (i.e., Cpi)

• Approach:
1. Efficiently pre-compute Cni and Ceij of all 

nodes/edges
2. Find paths using one traversal of timing graph 

and applying bound-based pruning
• Use Cni and Ceij to efficiently find path violation 

probabilities and prune paths

Problem Statement
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• Using existing SSTA techniques, we can express the ATi, 
RATi, di using generic quadratic expression such as:

• We can compute all ATi by one forward SSTA, and all RATi
by one backward SSTA

Computing Node/Edge Violation Probability
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• To estimate the violation probability efficiently
– Use a technique known as Pearson Curve [Solomon, JASA’78]
– Each probability computation involves several 10x20 table-lookups 

and low-complexity interpretation operations [such as 
multiplication/addition]

– Allows working with non-linear (quadratic) SSTA

• Complexity of node/edge violation probabilities
– Two rounds of SSTA for finding all node/edge AT/RAT
– Constant time at each node to compute the violation probability 

using Pearson Curve
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Approach

1. Efficiently pre-compute Cni and Ceij of all 
nodes/edges

2. Find paths using one traversal of timing graph 
and applying bound-based pruning

• Use Cni and Ceij to efficiently find violation 
probability and prune paths

• Will start from finding bounds for a simple path of 
two connected edges

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path



11

Two Connected Edges: Lower Bound

[Lemma] The lower bound for violation of        
two-connected edges is:

• Computation of lower bound requires:
– Pre-computed C12, C23, C2 

– One statistical Maximum operation, noting D2, D2j are 
easily computed by adding the pre-computed ATs and 
RATs
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Proof of Lower Bound (Follows from lemmas 1 and 2)

[Lemma 1] C123=C12+C23-C2+I1-I2
I1=Pr((D2 ≥ Dtar) ∩(D12 < Dtar) ∩(D23 < Dtar))
I2=Pr((D12 ≥ Dtar) ∩(D23 ≥ Dtar) ∩(D123 < Dtar))

[Lemma 2] I1- I2 ≥ Pr (D2 ≥ max∀j≠3(D2j ,Dtar)) - C2

I1+ I2 ≤ I3 -I1- I2 ≥ -I3 I1- I2 ≥ -I3
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Extension to Many Connected Edges

[Lemma] Lower bound Lk+1 of path-segment 
(n1 n2 … nk+1) is computed bottom-up:

(Proof using induction)
• Constant time to update given Lk

– Ck,k+1 and Ck pre-computed
– One statistical maximum operation needed
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Upper Bound

[Lemma] Upper bound Uk+1 is computed bottom-up:

• Intuitively, delay of longest path including segment 
(n1 n2 … nk+1) is smaller than delay of longest path 
including (n1 n2 … nk) 
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Dynamic Programming Path Extraction

1. Visit nodes in the timing-graph in topological order from 
primary inputs to primary outputs.

2. At each node ni, add edge eij to all the paths Pj stored at 
fanin nj of ni.

3. Merge all paths Pj for each fanin nj of ni and remove the 
inferior paths using the bound-based pruning.

4. At the primary output node, select the top desired 
number of paths using calculated violation probabilities.
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Step 3: Path Pruning
At intermediate node ni

– Compute the lower/upper bound for the stored paths
– Prune the paths whose upper bound is smaller than 

the M-th largest lower bound at the visited node

Special case: Since lower bounds are computed 
bottom-up and depend on previous lower 
bounds, the error accumulates after a few 
stages, therefore:

– If the number of paths after pruning is larger than αM 
(α >1), use actual violation probability to replace the 
lower bounds for some paths
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Step 4: Path Pruning
At primary output nodes:

– Compute actual violation probability of all 
propagated paths and select M paths with 
highest violation probability 

OR
– Select M paths with the largest upper bound 

of their path violation probabilities [Faster]
• Can alternatively use lower bound for selection
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1. Define a weighted version of timing-graph

2. Identify and prune edges of the graph which are 
guaranteed not to be on the most violating path

3. For the remaining (sub)graph, find the most 
violating path using previous technique for 
special case of M=1

Selection of The Most Violating Path (M=1)
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1. We add weights to the edges of the timing graph as 
follows:

• For edges connecting to a PI node, the weight is same as (pre-
computed) edge violation probability

• For other edges, the weight expression is inspired by the 
expression of lower bound and requires one statistical Maximum 
operation per edge

[Note]: The weight of any path in the graph is the lower bound of the 
violation probability of that path
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2. Identify and prune edges of the graph which are 
guaranteed not to be on the most violating path

– Find the longest path and compute the summation of its edge 
weights, LBmax

– LBmax: the maximum attainable lower bound

[Lemma] All edges eij for which  Cij < LBmax can be 
removed from the graph and will not be in the most 
violating path.

3. For remaining subgraph (which we should is of 
significantly smaller size) apply previous technique 
for M=1 to find most violating path

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path
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Simulation Results
• Benchmarks: ISCAS’85 suite

• Technology: 90nm TSMC Library
• Process variations in channel length and zero-

bias threshold voltage
– 42 independent random variables 
– 21 independent Vt variables and 21 independent Leff 

variables for different regions specified by a 3-level 
hierarchical grid-model

– Assume process variations have Gaussian distribution 
with standard deviation of 7% of their mean
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Simulation Results

• Monte Carlo simulation to compute node and 
edge violation probabilities (pre-possessing 
setup)

• Considered finding paths for small values of M 
which have been shown to be more prone to 
error

• For comparison we applied Monte Carlo 
simulation to exactly find M paths with highest 
violation probability (search among all paths)
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Path Extraction (M=200)
Case I (M = 200)

Ave(Cp-LBp) Ave(UBp-Cp) Ave(CMC)-
Ave(Cp)

Ave(Cp) Runtime
(SEC)

C432 0.0170 0.0001 0.0000 0.3823 3.89

C499 0.0001 0.0253 0.0142 0.2722 17.49

C880 0.0006 0.0006 0.0000 0.3516 1.15

C1355 0.0001 0.0253 0.0142 0.2722 16.51

C1908 0.0001 0.0347 0.0173 0.2567 14.15

C2670 0.0001 0.0102 0.0009 0.2615 1.02

C3540 0.0004 0.0000 0.0000 0.1948 9.17

C5315 0.0021 0.0001 0.0000 0.1878 3.25

C7552 0.0095 0.0280 0.0126 0.1201 7.43

AVE 0.0033 0.0138 0.0066

Accuracy of the bounds: Average difference of actual violation probability 
(Cp) found from MC simulation with computed lower/upper bound is very small

We find the top M paths using MC simulation (search among all paths) and report 
different between average violation probability of the M paths found using MC and 
the M paths using our approach

Average of violation probabilities of selected paths is reported here
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• Our algorithm still has very low error compared to Monte Carlo 
simulation results. The runtime is in seconds.

Path Extraction (M=100)
Case I (M = 100)

Ave(Cp-LBp) Ave(UBp-Cp) Ave(Cp) Runtime
(M=100)

Runtime
(M=200)

C432 0.0298 0.0002 0.3960 1.26 3.89

C499 0.0002 0.0154 0.2962 7.81 17.49

C880 0.0005 0.0005 0.3776 0.44 1.15

C1355 0.0002 0.0154 0.2962 7.71 16.51

C1908 0.0002 0.0002 0.2953 2.67 14.15

C2670 0.0002 0.0029 0.3028 0.68 1.02

C3540 0.0008 0.0047 0.2138 3.09 9.17

C5315 0.0013 0.0099 0.2072 1.49 3.25

C7552 0.0000 0.0100 0.2039 2.49 7.43

AVE 0.0037 0.0066
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Graph Pruning (M = 1)
BENCH LBmax Pruning % max(Cpi)-I max(Cpi)-II

C432 0.4327 86.50 0.4327 0.4327

C499 0.3923 97.21 0.3923 0.3923

C880 0.4758 95.75 0.4758 0.4758

C1355 0.3923 97.21 0.3923 0.3923

C1908 0.3964 95.68 0.3964 0.3964

C2670 0.3911 97.89 0.3911 0.3911

C3540 0.3375 97.22 0.3375 0.3375

C5315 0.3375 97.58 0.3449 0.3449

C6288 0.3895 97.15 0.3895 0.3895

C7552 0.4086 98.95 0.4086 0.4086

• Pruning done using LBmax, corresponding to path with maximum lower 
bound
• Simple graph pruning can prune 96.12% edges on average

We compared two cases: maximum Cpi among all the paths (case I) and 
maximum Cpi among the paths going through the edge with maximum edge 
violation probability (case II)
[Observation] The path with the highest timing violation probability goes 
through the edge with the highest edge violation probability.
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Summary and Conclusions
• Main contribution is in obtaining lower and upper bounds 

for a path segment
– Need constant time for incremental update

• Showed application of bounds to find top M violating 
paths 
– Bounds were used for pruning in a dynamic programming 

framework

• Discussed simplified solution for graph pruning if the most 
violating path should be found 

• Overall, bounds can be useful in other formulations of the 
problem and in other (non-dynamic programming) 
frameworks
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