
W
IS

C
A

D
 –

V
LS

I
D

es
ig

n
 A

u
to

m
at

io
n

Bound-Based Identification of
Timing-Violating Paths

Under Variability

Lin Xie and Azadeh Davoodi
Dept. of Electrical & Computer Engineering

University of Wisconsin - Madison

WISCAD
VLSI Design Automation Lab
http://wiscad.ece.wisc.edu

2

Path Identification Under Variability

• Identification is challenging under process
and environmental variations
– Delay of a path varies for each point in variation space

• Useful in different applications
– At-speed test
– Post-silicon repair of timing failures
– Incremental timing-driven optimization

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

3

• [Wang et al, TCAD’ 04]
– Finds M paths with highest probability of violating a timing constraint
– High error for small M and simplified Statistical Static Timing

Analysis

• [Zolotov et al, ICCAD’08]
– Finds M paths that best “represent” the variation space in which

timing violation occurs (Test Quality Metric)
– Uses branch-and-bound for path pruning
– Limited number of paths are expected to predict chip failure during

testing

• [Heloue et al, ICCAD’08]
– Finds longest paths for each point in the variation space
– No notion of timing constraint

Some Previous Works

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

4

Contributions
• Analytical bounds for “violation-probability” of a

path
– No assumption on technique used for variation

analysis
– Incremental update (in constant time) if path

segment is extended to a larger one

• Demonstrate the use of bounds to find M paths
with highest “timing-violation probability”
– Paths found efficiently with high accuracy

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

5

Bound-Based Path Extraction
• Can we identify timing-violating paths

efficiently?
– Pick up promising nodes/edges to build paths
– Use lower/upper bounds to prune redundant paths

• Difficulties
– How to evaluate the importance of nodes/edges?
– How to efficiently and accurately compute the

lower/upper bounds of the connected edges?

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

6

• Probability that a node/edge/path-segment will be subset
of a longer path which might have a delay larger than a
timing constraint

• Dni, Deij, Dpi represent delay of longest paths going
through ni, eij, pi and are all random variables

Violation Probability of A Node/Edge/Path

)Pr()Pr(tariitarnn DRATATDDC
ii

≥+=≥=

)Pr()Pr(tarjjitaree DdRATATDDC
ijij

≥++=≥=

)Pr()Pr(
2

1 tari

i

k
ktarpp DRATdATDDC

ii
≥++=≥= ∑

=

ni njn1 n2
Arrival Time of i
(includes di, delay of
node i)

Required Arrival
Time at i

Timing
Constraint

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

7

• Given a timing-graph with nodes N and
edges E, identify M paths with highest
violation probabilities (i.e., Cpi)

• Approach:
1. Efficiently pre-compute Cni and Ceij of all

nodes/edges
2. Find paths using one traversal of timing graph

and applying bound-based pruning
• Use Cni and Ceij to efficiently find path violation

probabilities and prune paths

Problem Statement

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

8

∑
=

+=
n

j
jjji axcAT

1

2)(

• Using existing SSTA techniques, we can express the ATi,
RATi, di using generic quadratic expression such as:

• We can compute all ATi by one forward SSTA, and all RATi
by one backward SSTA

Computing Node/Edge Violation Probability

)Pr()Pr(tariitarnn DRATATDDC
ii

≥+=≥=

)Pr()Pr(tarjjitaree DdRATATDDC
ijij

≥++=≥=

Process
variation

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

9

• To estimate the violation probability efficiently
– Use a technique known as Pearson Curve [Solomon, JASA’78]
– Each probability computation involves several 10x20 table-lookups

and low-complexity interpretation operations [such as
multiplication/addition]

– Allows working with non-linear (quadratic) SSTA

• Complexity of node/edge violation probabilities
– Two rounds of SSTA for finding all node/edge AT/RAT
– Constant time at each node to compute the violation probability

using Pearson Curve

)Pr()Pr(tariitarnn DRATATDDC
ii

≥+=≥=

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

Computing Node/Edge Violation Probability

10

Approach

1. Efficiently pre-compute Cni and Ceij of all
nodes/edges

2. Find paths using one traversal of timing graph
and applying bound-based pruning

• Use Cni and Ceij to efficiently find violation
probability and prune paths

• Will start from finding bounds for a simple path of
two connected edges

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

11

Two Connected Edges: Lower Bound

[Lemma] The lower bound for violation of
two-connected edges is:

• Computation of lower bound requires:
– Pre-computed C12, C23, C2

– One statistical Maximum operation, noting D2, D2j are
easily computed by adding the pre-computed ATs and
RATs

)),(maxPr(2 23222312123 tarjj DDDCCCC ≠∀≥+−+≥

n2 n3

ni nj

n1

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

12

Proof of Lower Bound (Follows from lemmas 1 and 2)

[Lemma 1] C123=C12+C23-C2+I1-I2
I1=Pr((D2 ≥ Dtar) ∩(D12 < Dtar) ∩(D23 < Dtar))
I2=Pr((D12 ≥ Dtar) ∩(D23 ≥ Dtar) ∩(D123 < Dtar))

[Lemma 2] I1- I2 ≥ Pr (D2 ≥ max∀j≠3(D2j ,Dtar)) - C2

I1+ I2 ≤ I3 -I1- I2 ≥ -I3 I1- I2 ≥ -I3

)),(maxPr(2 23222312123 tarjj DDDCCCC ≠∀≥+−+≥

n2 n3

ni nj

n1

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

13

Extension to Many Connected Edges

[Lemma] Lower bound Lk+1 of path-segment
(n1 n2 … nk+1) is computed bottom-up:

(Proof using induction)
• Constant time to update given Lk

– Ck,k+1 and Ck pre-computed
– One statistical maximum operation needed

nk nk+1n1 n2 nk-1

ni nj

)),(maxPr(2 ,)(,11,1 tarjkkFOjkjkkkkkk DDDCCLL ∈+≠∀++ ≥+−+=

∑∑
=

∈+≠∀
=

++ ≥+−+≥
k

i
tarjiiFOjijii

k

i
iik DDDCCC

2
,)(,1

1
1,1...123))),(maxPr(2(

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

14

Upper Bound

[Lemma] Upper bound Uk+1 is computed bottom-up:

• Intuitively, delay of longest path including segment
(n1 n2 … nk+1) is smaller than delay of longest path
including (n1 n2 … nk)

)(min 1,},...,2,1{1...123 +=∀+ ≤ iikik CC

nk nk+1n1 n2 nk-1

nj

),min(1,1 ++ = kkkk CUU

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

15

Dynamic Programming Path Extraction

1. Visit nodes in the timing-graph in topological order from
primary inputs to primary outputs.

2. At each node ni, add edge eij to all the paths Pj stored at
fanin nj of ni.

3. Merge all paths Pj for each fanin nj of ni and remove the
inferior paths using the bound-based pruning.

4. At the primary output node, select the top desired
number of paths using calculated violation probabilities.

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

16

Step 3: Path Pruning
At intermediate node ni

– Compute the lower/upper bound for the stored paths
– Prune the paths whose upper bound is smaller than

the M-th largest lower bound at the visited node

Special case: Since lower bounds are computed
bottom-up and depend on previous lower
bounds, the error accumulates after a few
stages, therefore:

– If the number of paths after pruning is larger than αM
(α >1), use actual violation probability to replace the
lower bounds for some paths

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

17

Step 4: Path Pruning
At primary output nodes:

– Compute actual violation probability of all
propagated paths and select M paths with
highest violation probability

OR
– Select M paths with the largest upper bound

of their path violation probabilities [Faster]
• Can alternatively use lower bound for selection

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

18

1. Define a weighted version of timing-graph

2. Identify and prune edges of the graph which are
guaranteed not to be on the most violating path

3. For the remaining (sub)graph, find the most
violating path using previous technique for
special case of M=1

Selection of The Most Violating Path (M=1)

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

19

1. We add weights to the edges of the timing graph as
follows:

• For edges connecting to a PI node, the weight is same as (pre-
computed) edge violation probability

• For other edges, the weight expression is inspired by the
expression of lower bound and requires one statistical Maximum
operation per edge

[Note]: The weight of any path in the graph is the lower bound of the
violation probability of that path

()(),Pr max , 2ij i i k tar ik j
ij

ij

C D D D C i PI
w

i PIC
∀ ≠

⎧ + ≥ − ∀ ∉⎪= ⎨ ∀ ∈⎪⎩

∑∑
=

∈+≠∀
=

++ ≥+−+≥
k

i
tarjiiFOjijii

k

i
iik DDDCCC

2
,)(,1

1
1,1...123))),(maxPr(2(

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

Selection of The Most Violating Path (M=1)

20

2. Identify and prune edges of the graph which are
guaranteed not to be on the most violating path

– Find the longest path and compute the summation of its edge
weights, LBmax

– LBmax: the maximum attainable lower bound

[Lemma] All edges eij for which Cij < LBmax can be
removed from the graph and will not be in the most
violating path.

3. For remaining subgraph (which we should is of
significantly smaller size) apply previous technique
for M=1 to find most violating path

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

Selection of The Most Violating Path (M=1)

21

Simulation Results
• Benchmarks: ISCAS’85 suite

• Technology: 90nm TSMC Library
• Process variations in channel length and zero-

bias threshold voltage
– 42 independent random variables
– 21 independent Vt variables and 21 independent Leff

variables for different regions specified by a 3-level
hierarchical grid-model

– Assume process variations have Gaussian distribution
with standard deviation of 7% of their mean

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

22

Simulation Results

• Monte Carlo simulation to compute node and
edge violation probabilities (pre-possessing
setup)

• Considered finding paths for small values of M
which have been shown to be more prone to
error

• For comparison we applied Monte Carlo
simulation to exactly find M paths with highest
violation probability (search among all paths)

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

23

Path Extraction (M=200)
Case I (M = 200)

Ave(Cp-LBp) Ave(UBp-Cp) Ave(CMC)-
Ave(Cp)

Ave(Cp) Runtime
(SEC)

C432 0.0170 0.0001 0.0000 0.3823 3.89

C499 0.0001 0.0253 0.0142 0.2722 17.49

C880 0.0006 0.0006 0.0000 0.3516 1.15

C1355 0.0001 0.0253 0.0142 0.2722 16.51

C1908 0.0001 0.0347 0.0173 0.2567 14.15

C2670 0.0001 0.0102 0.0009 0.2615 1.02

C3540 0.0004 0.0000 0.0000 0.1948 9.17

C5315 0.0021 0.0001 0.0000 0.1878 3.25

C7552 0.0095 0.0280 0.0126 0.1201 7.43

AVE 0.0033 0.0138 0.0066

Accuracy of the bounds: Average difference of actual violation probability
(Cp) found from MC simulation with computed lower/upper bound is very small

We find the top M paths using MC simulation (search among all paths) and report
different between average violation probability of the M paths found using MC and
the M paths using our approach

Average of violation probabilities of selected paths is reported here

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

24

• Our algorithm still has very low error compared to Monte Carlo
simulation results. The runtime is in seconds.

Path Extraction (M=100)
Case I (M = 100)

Ave(Cp-LBp) Ave(UBp-Cp) Ave(Cp) Runtime
(M=100)

Runtime
(M=200)

C432 0.0298 0.0002 0.3960 1.26 3.89

C499 0.0002 0.0154 0.2962 7.81 17.49

C880 0.0005 0.0005 0.3776 0.44 1.15

C1355 0.0002 0.0154 0.2962 7.71 16.51

C1908 0.0002 0.0002 0.2953 2.67 14.15

C2670 0.0002 0.0029 0.3028 0.68 1.02

C3540 0.0008 0.0047 0.2138 3.09 9.17

C5315 0.0013 0.0099 0.2072 1.49 3.25

C7552 0.0000 0.0100 0.2039 2.49 7.43

AVE 0.0037 0.0066

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

25

Graph Pruning (M = 1)
BENCH LBmax Pruning % max(Cpi)-I max(Cpi)-II

C432 0.4327 86.50 0.4327 0.4327

C499 0.3923 97.21 0.3923 0.3923

C880 0.4758 95.75 0.4758 0.4758

C1355 0.3923 97.21 0.3923 0.3923

C1908 0.3964 95.68 0.3964 0.3964

C2670 0.3911 97.89 0.3911 0.3911

C3540 0.3375 97.22 0.3375 0.3375

C5315 0.3375 97.58 0.3449 0.3449

C6288 0.3895 97.15 0.3895 0.3895

C7552 0.4086 98.95 0.4086 0.4086

• Pruning done using LBmax, corresponding to path with maximum lower
bound
• Simple graph pruning can prune 96.12% edges on average

We compared two cases: maximum Cpi among all the paths (case I) and
maximum Cpi among the paths going through the edge with maximum edge
violation probability (case II)
[Observation] The path with the highest timing violation probability goes
through the edge with the highest edge violation probability.

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

26

Summary and Conclusions
• Main contribution is in obtaining lower and upper bounds

for a path segment
– Need constant time for incremental update

• Showed application of bounds to find top M violating
paths
– Bounds were used for pruning in a dynamic programming

framework

• Discussed simplified solution for graph pruning if the most
violating path should be found

• Overall, bounds can be useful in other formulations of the
problem and in other (non-dynamic programming)
frameworks

Preliminaries Finding Bounds Simulation ResultsExtracting Paths Most Violating Path

