Bound-Based ldentification of
Timing-Violating Paths
Under Variability

Lin Xie and Azadeh Davoodi
Dept. of Electrical & Computer Engineering
University of Wisconsin - Madison

c
(@)
=
@©
&
(@)
+—
)
<
C
2
(%))
(O]
(m)
0
—
>
I
(|
<
O
@
=

WISCAD
VLSI Design Automation Lab
http://wiscad.ece.wisc.edu

,- "‘”’q. Preliminaries Finding Bounds Extracting Paths Most Violating Path ~ Simulation Results

Path Identification Under Variability

L\ 4

* |dentification is challenging under process

and environmental variations
— Delay of a path varies for each point in variation space

» Useful in different applications
— At-speed test
— Post-silicon repair of timing failures
— Incremental timing-driven optimization

"‘”’q. Preliminaries Finding Bounds Extracting Paths Most Violating Path ~ Simulation Results

... w

Some Previous Works

 [Wang et al, TCAD’ 04]
— Finds M paths with highest probability of violating a timing constraint
— High error for small M and simplified Statistical Static Timing
Analysis

« [Zolotov et al, ICCAD’08]

— Finds M paths that best “represent” the variation space in which
timing violation occurs (Test Quality Metric)

— Uses branch-and-bound for path pruning

— Limited number of paths are expected to predict chip failure during
testing

* [Heloue et al, ICCAD’08]

— Finds longest paths for each point in the variation space
— No notion of timing constraint

M Preliminaries Finding Bounds Extracting Paths ~ Most Violating Path ~ Simulation Results

Contributions

 Analytical bounds for “violation-probability” of a
path

— No assumption on technique used for variation
analysis

— Incremental update (in constant time) if path
segment is extended to a larger one

* Demonstrate the use of bounds to find M paths
with highest “timing-violation probability”
— Paths found efficiently with high accuracy

BB Preliminaries Finding Bounds Extracting Paths ~ Most Violating Path ~ Simulation Results

y,.. w

Bound-Based Path Extraction

« Can we identify timing-violating paths
efficiently?
— Pick up promising nodes/edges to build paths
— Use lower/upper bounds to prune redundant paths

* Difficulties
— How to evaluate the importance of nodes/edges?

— How to efficiently and accurately compute the
lower/upper bounds of the connected edges?

,-j"*"-".; Preliminaries Finding Bounds Extracting Paths Most Violating Path ~ Simulation Results

L\

il Violation Probability of A Node/Edge/Path

* Probability that a node/edge/path-segment will be subset
of a longer path which might have a delay larger than a
timing constraint

TX RN & > - >@ ooeo oo o
n, n, . .
—) miisofival
C, =Pr(D, 2D,)=FPr @ AT, A Dy,) (Imdnlneg%rwtrdmﬁy of
! ' node i
C,, =Pr(D,, >D,)=Pr(AT,+RAT, +d, > D)

C, =Pr(D, > D,,) = Pr(AT, +Zd +RAT >D,,)

tar

* Dy, Dgjj; Dy represent delay of longest paths going

nir ~elj
through n;, e;, p; and are all random variables

"’q. Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

Problem Statement

* Given a timing-graph with nodes N and
edges E, identify M paths with highest
violation probabilities (i.e., C)

* Approach:

1. Efficiently pre-compute C; and C; of all
nodes/edges

2. Find paths using one traversal of timing graph
and applying bound-based pruning

Use C; and C; to efficiently find path violation
probabilities and prune paths

Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

Computiﬂg Node/Edge Violation Probability

C, =Pr(D, > D,
C, =Pr(D, >D

)=Pr(AT. + RAT. > D,,,)
)=Pr(AT, + RAT, +d; 2 D,)

tar

» Using existing SSTA techniques, we can express the AT;,
RAT,, d. using generic quadratic expression such as:

N Process
AT Z CJ@ aj)2 variation
j=1

« We can compute all AT, by one forward SSTA, and all RAT,
by one backward SSTA

Simulation Results

”q. Preliminaries Finding Bounds Extracting Paths Most Violating Path

I I.

y,.. w

Computing Node/Edge Violation Probability
C, =Pr(D, > D,,)=Pr(AT, + RAT, > D)

« To estimate the violation probability efficiently
— Use a technique known as Pearson Curve [Solomon, JASA’'78]

— Each probability computation involves several 10x20 table-lookups
and low-complexity interpretation operations [such as
multiplication/addition]

— Allows working with non-linear (quadratic) SSTA

« Complexity of node/edge violation probabilities
— Two rounds of SSTA for finding all node/edge AT/RAT

— Constant time at each node to compute the violation probability
using Pearson Curve

”'"q. Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

- w
AL

W

Approach

1. Efficiently pre-compute C; and C; of all
nodes/edges

2. Find paths using one traversal of timing graph
and applying bound-based pruning
* Use C,; and C; to efficiently find violation
probability and prune paths

« Will start from finding bounds for a simple path of
two connected edges

”"q. Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

y,.. w

W

l Two Connected Edges: Lower Bound

n n;
o

[] []

[] []

[] []
o~ —->0®
n, n, Ny

[Lemma] The lower bound for violation of
two-connected edges is:

C123 2 C:12 T C23 - 2C2 T Pr(Dz 2 maXVj¢3(D2j’ Dtar))

« Computation of lower bound requires:
— Pre-computed C,,, C,3, C,
— One statistical Maximum operation, noting D,, D, are
easily computed by adding the pre-computed ATs and
RATs

Frals

.| Preliminaries Finding Bounds

y,.. w

Proof of Lower

Extracting Paths Most Violating Path ~ Simulation Results

Bound (Follows from lemmas 1 and 2)

[Lemma 2] I;-1,2

[Lemma 1] C153=C1,+Cys-Cytly-l;
11=Pr((D2 2 Dyy) (D42 < Digr) M(D3 < Digy))
;=Pr((D122 D) M(D23 2 D) M(Dy23 < Diyr))

C123 2 C12 + C23 o 2C2 + PI‘(D2 2 maXVj¢3(:)Zj) Dtar))
L 4 Cr,
f: 9:‘ [| C'Tlgg [|
n, n, N3
Chog
('L

Pr (D2 2 maX‘v’j;tB(DZj ’Dtar))) C2

T

-|, Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

y,.. w

Extension to Many Connected Edges

n.)
i nJ
[J [J
[J [J
[[
eoe | O > >@ ooo @, —>@® boo
n, n, Ny.q Ny Ny q

" "
Ciosxs1 2 ZCi,m + Z (—2C; + Pr(D; =2 max.i.1 icroci) (D i Diar)))
i1 i—2

[Lemma] Lower bound L,,, of path-segment
(n,2n,>...2n,,,) is computed bottom-up:

L = L+ Cy s =2C, + Pr(Dy 2 MaX ;. jeroq (Py j» Diar)
(Proof using induction)

- Constant time to update given L,
— Cy +1 and C, pre-computed
— One statistical maximum operation needed

! ”"'q. Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

Upper Bound

w

|
Ny

n;
[J [J
[J [J
[] []
eoe |O® > >0 oo @, >0 o0
n, n, Ny.q Ny Ny q

[Lemma] Upper bound U, ., iIs computed bottom-up:

U, =minlU,,C,.) |::> Ciogka S minVi:{l,Z k}(Ci,i+l)

* Intuitively, delay of longest path including segment
(n=2n,~>...2n,,4) is smaller than delay of longest path
including (n,=2n,~>...2n,)

il

.; Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

y,.. w

Dynamic Programming Path Extraction

1. Visit nodes in the timing-graph in topological order from
primary inputs to primary outputs.

2. At each node n;, add edge g; to all the paths P, stored at
fanin n, of n;.

~
3.| Merge all paths P, for each fanin n, of n; and remove the
inferior paths using the bound-based pruning.

number of paths using calculated violation probabilities.

4.[At the primary output node, select the top desired

J

PR Preliminaries Finding Bounds — Extracting Paths Most Violating Path ~ Simulation Results

L\ 4

Step 3: Path Pruning

At Intermediate node ni

— Compute the lower/upper bound for the stored paths

— Prune the paths whose upper bound is smaller than
the M-th largest lower bound at the visited node

Special case: Since lower bounds are computed
bottom-up and depend on previous lower
bounds, the error accumulates after a few
stages, therefore:

— If the number of paths after pruning is larger than aM
(a >1), use actual violation probability to replace the
lower bounds for some paths

.; Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

. PR ot

Step 4: Path Pruning

At primary output nodes:

— Compute actual violation probability of all
propagated paths and select M paths with
highest violation probability

OR

— Select M paths with the largest upper bound
of their path violation probabilities [Faster]

Can alternatively use lower bound for selection

PR Preliminaries Finding Bounds Extracting Paths ~ Most Violating Path ~ Simulation Results

Selection of The Most Violating Path (M=1)

1. Define a weighted version of timing-graph

2. ldentify and prune edges of the graph which are
guaranteed not to be on the most violating path

3. For the remaining (sub)graph, find the most
violating path using previous technique for
special case of M=1

B Preliminaries Finding Bounds Extracting Paths ~ Most Violating Path ~ Simulation Results

. PP ot

(o ’

Ml Selection of The Most Violating Path (M=1)

1. We add weights to the edges of the timing graph as
follows: _
o +Pr(Di >max(D,,, Dtar))—ZCi Vi ¢ Pl

Wi' =< Vk# j -
. C VI e PI

J

.

« For edges connecting to a Pl node, the weight is same as (pre-
computed) edge violation probability

For other edges, the weight expression is inspired by the
expression of lower bound and requires one statistical Maximum

operation per edge

K k
Cios ka2 Zci,i+1 + Z (—2C; + Pr(D; =2 maX;,i,1 jcroi) (Di i+ Diar)
=

=2

[Note]: The weight of any path in the graph is the lower bound of the
violation probability of that path

B Preliminaries Finding Bounds ~ Extracting Paths ~ Most Violating Path ~ Simulation Results

2
W

i Selection of The Most Violating Path (M=1)

. PP ot

2. ldentify and prune edges of the graph which are
guaranteed not to be on the most violating path

— Find the longest path and compute the summation of its edge
weights, LBmax

— LBmax: the maximum attainable lower bound

[Lemma] All edges ei for which Cjj < LBmax can be
removed from the graph and will not be in the most
violating path.

3. For remaining subgraph (which we should is of

significantly smaller size) apply previous technique
for M=1to find most violating path

Il Preliminaries Finding Bounds — Extracting Paths Most Violating Path Simulation Results

Simulation Results

L\ 4

« Benchmarks: ISCAS’85 suite

* Technology: 90nm TSMC Library

* Process variations in channel length and zero-
bias threshold voltage
— 42 independent random variables

— 21 independent Vt variables and 21 independent Leff
variables for different regions specified by a 3-level
hierarchical grid-model

— Assume process variations have Gaussian distribution
with standard deviation of 7% of their mean

{""‘ Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

.-W?.
Simulation Results

! .'\:-"-'I' ¥

* Monte Carlo simulation to compute node and
edge violation probabilities (pre-possessing
setup)

» Considered finding paths for small values of M
which have been shown to be more prone to
error

* For comparison we applied Monte Carlo
simulation to exactly find M paths with highest
violation probability (search among all paths)

Preliminaries Simulation Results

Path Extraction (M=200)

Case | (M = 200)

Finding Bounds Extracting Paths Most Violating Path

Ave(Cp-LBp) Ave(UBp-Cp @ve(CMc)- Ave(Cp) Runtime
Ave(Cp) (SEC)
C432 0.0170 0.0001 0.0000 0.3823 3.89
C499 0.0001 0.0253 0.0142 0.2722 17.49
C880 0.0006 0.0006 0.0000 0.3516 1.15
C1355 0.0001 0.0253 0.0142 0.2722 16.51
C1908 0.0001 0.0347 0.0173 0.2567 14.15
C2670 0.0001 0.0102 0.0009 0.2615 1.02
C3540 0.0004 0.0000 0.0000 0.1948 9.17
C5315 0.0021 0.0001 0.0000 0.1878 3.25
C7552 0.0095 0.0280 0.0126 | (0.1201) { 7.43)
AVE Q 0033 0. OlSEy 0.0066
Wogtag et pilinalriRIattidtclign gork FEPEr ArpamEA R L BARIRP Ot

diff@i%)#@&%%ﬁﬁ@@ﬁnﬂ%l%ﬂ%ﬁEBH%HMQEtfb‘%vM/%ﬁS@rfBHGHdJ@%M A

the M paths using our approach

Preliminaries

Path Extraction (M=100)

Finding Bounds Extracting Paths Most Violating Path Simulation Results

Case | (M = 100) -
Ave(Cp-LBp) Ave(UBp-Cp) Ave(Cp) Runtime Runtime
(M=100) (M=200)
C432 0.0298 0.0002 03960 [/ 1.26 3.89
C499 0.0002 0.0154 0.2962 7.81 17.49
880 0.0005 0.0005 0.3776 0.44 1.15
C1355 0.0002 0.0154 0.2962 7.71 16.51
1908 0.0002 0.0002 0.2953 2.67 14.15
2670 0.0002 0.0029 0.3028 0.68 1.02
3540 0.0008 0.0047 0.2138 3.09 9.17
C5315 0.0013 0.0099 0.2072 1.49 3.25
C7552 0.0000 0.0100 02039\ 249 7.43)
AVE 0.0037 0.0066

« Our algorithm still has very low error compared to Monte Carlo
simulation results. The runtime is in seconds.

Preliminaries Finding Bounds Extracting Paths Most Violating Path Simulation Results

0.4327 | 86.50 0.4327 0.4327
0.3923 | 97.21 0.3923 0.3923
0.4758 | 95.75 0.4758 0.4758
0.3923 | 97.21 0.3923 0.3923
0.3964 | 95.68 0.3964 0.3964
0.3911 | 97.89 0.3911 0.3911
0.3375 | 97.22 0.3375 0.3375
0.3375 | 97.58 0.3449 0.3449
0.3895 | 97.15 0.3895 0.3895
0.4086 | 98.95)KO.4086 0.4086 /

me?%ad%ﬂévl’f%l EBnEXEBHBsHBhAIRGNE ARG/ RRRRERRR ARG

Cp| amon the paths going through the edge with maximum edge
V'@ﬁﬁ ﬂa%r FMr(ﬁﬁtf]@am prune 96.12% edges on average
[Observation] with the highest timing violation probability goes
through the edge W|th the highest edge violation probability.

B Preliminaries Finding Bounds ~ Extracting Paths ~ Most Violating Path ~ Simulation Results

Summary and Conclusions

¥yl

* Main contribution is in obtaining lower and upper bounds
for a path segment
— Need constant time for incremental update

« Showed application of bounds to find top M violating
paths

— Bounds were used for pruning in a dynamic programming
framework

* Discussed simplified solution for graph pruning if the most
violating path should be found

e Qverall, bounds can be useful in other formulations of the
problem and in other (non-dynamic programming)
frameworks

