Introduction to Hardware-dependent Software Design

ASPDAC 2009 Special Session
Hardware-dependent Software for Multi- and Many-Core Embedded Systems

Rainer Dömer
UC Irvine, California
USA

Andreas Gerstlauer
Univ. of Texas at Austin
USA

Wolfgang Müller
University of Paderborn
Germany

Introduction

- Embedded System Design
 - Rising system complexities
 - Rapidly increasing software content
 - Domination of embedded software
 - Special attention to hardware/software interface

- Hardware-dependent Software (HdS)
 - Gained relevance in recent years due to
 - Flexibility
 - Possibility of late change
 - Quick adaptability
 - Importance already observed by VSIA in 2002
Motivation

- **Design Productivity Gap**
 - Hardware productivity gap
 - Capacities in chip size outpace capabilities in chip design
 - Moore’s law: chip capacity doubles every 18 months
 - HW design productivity estimated at 1.6x over 18 months
 - Software productivity gap
 - Growth of SW productivity estimated at 2x every 5 years
 - Needs in embedded SW estimated at 2x over 10 months
 - System productivity gap
 - HW gap + SW gap

(source: Ecker et. al. [3]).
Motivation

- Design Productivity Gap
 - Hardware productivity gap
 - Software productivity gap
 - System productivity gap
 • HW gap + SW gap

- Additional complexity
 - Close interaction and tight dependency between HW and SW

➢ Hardware-dependent Software is at the core of the system design challenge!

Hardware-dependent Software

- Definition:
 Hardware-dependent Software (HdS) is the software in an embedded system that closely interacts with the underlying hardware platform.

- Specifically
 - HdS is built specifically for a particular HW block
 • HdS is meaningless without the HW
 - HdS and HW together implement the core functionality
 • HW is meaningless without the HdS
Hardware-dependent Software

- HdS is part of a Layered Software Architecture
 - HdS is low-level software
 - HdS provides application software with an interface to hardware features

➤ HdS is a software layer between the application software and the underlying hardware platform

Layered Software Architecture

- Application Software
- Middleware / Adapter Layer
- Communication Protocol Stacks
- Device Drivers
- Boot Firmware
- Hardware Abstraction Layer
- System Bus

(based on Ecker et. al. [3]).
Developing HdS

• Typical Embedded SW development
 – Dedicated C/C++ development environments
 – Targeted tool chains
 • Cross-compiler
 • Target-specific assembler and linkers
 • Debuggers
 • Linters
 – Customization for embedded software
 • Intrinsics, pragmas, inline assembly

• Development
 – Most often manual
 – Tedious
 – Error-prone

Developing HdS

• Goals
 – Move to higher level of abstraction!
 – Utilize automation!
 • Eliminate manual coding, debugging, and validation

• Advanced approaches
 – Model-based design
 – Code generation
 • Automatically generate low-level code from abstract, high-level description
 – Software synthesis
 • Automatically generate device drivers, protocol stacks, and entire application software
HdS for Multi- and Many-Core Platforms

- Moving beyond Single-Core Architectures
 - Venture Develoment Corp. (VDC) projects a 6 times increase of multi-core microprocessors between 2007 and 2011
 - Multi-core (2-10 cores)
 - Many-core (tens, hundreds, thousands of cores)
- Growing variety of system architectures
 - Multi-processing
 - Symmetric, homogeneous
 - Asymmetric, heterogeneous
 - Operating System (OS / RTOS)
 - Single shared OS with common HdS stack
 - Multiple / independent OS

➢ HdS design is a growing challenge!

Special Session Outlook

- Semiconductor Perspective:
 - “Using a Dataflow abstracted Virtual Prototype for Hardware-dependent Software Design”, Michael Velten et.al, Infineon Technologies AG, Germany

- Viewpoint of a consumer electronics manufacturer
 - “Needs and Trends in Embedded Software Development for Consumer Electronics”, Yasutaka Tsunakawa, Sony Corp., Japan

- Potential solution
 - “Hardware-dependent Software Synthesis for Many-Core Embedded Systems”, Samar Abdi et.al., CECS, UC Irvine, USA
Additional Information…

- **Hardware-dependent Software Principles and Practice**
 - Edited by
 - Wolfgang Ecker
 - Wolfgang Müller
 - Rainer Dömer
 - Springer, Feb. 2009
 - ISBN: 978-1-4020-9435-4
 - Approx. 310 p., Hardcover