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Motivation

! Improvement of execution speed of current VP solution of more 
than factor 10, i.e., reduce simulation time from 1 h " 5 min

! Provide higher abstracted TLM+ modeling style (to achieve 
performance) which is compatible and interchangeable with 
today's VP modeling

! Ease the integration and reuse of algorithm models
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Introductive 3G Modem VP
Basic Structure of the VP Models

! Bus interface handling, 
register accesses, reset, 
clock, interrupts

! State machine (S1-S4) 
controlled via the bus 
interface

! Optionally, a signal processing 
unit containing the reused 
algorithm models
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Introductive 3G Modem VP
Structure of the 3G Modem VP

! Backbone components: ISS, memories, bridges, and busses

! System control: SCU, ICU, memory control, and timer

! High cycle accuracy, bit exact data path simulation

! 3G physical layer testbench and regression suite

! VP simulation speed: 1/300 (max simulation time 5 minutes)
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Introductive 3G Modem VP
VP Platform

! 3G modem integrated with application HW into one SoC

! Execution of 3G protocol stack and further application SW

! Drawbacks: High cycle accuracy and bit exact data path

! Resulting simulation time up to 1 hour is not acceptable

" A new methodology beyond TLM is required
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Embedded HW/SW System
Abstract View (Bottom-Up)

! Hardware core incorporates 
functionality of a HW device

! Core interface offers internal 
access to the HW registers

! Hardware registers enable software 
access to the hardware

! HW/SW interface provides SW 
access to the HW registers

! OS offers an IO subsystem with a 
device driver interface

! OS interface offers with its IO 
subsystem access to HW devices

! Application SW runs on top of the 
operation system
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Embedded HW/SW System
Dataflow Abstraction
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Dataflow Abstraction Methodology
Requirements

! ISS including its compiler does not provide HW/SW interface 
abstraction " native software execution required

! Development of a CPU model which offers the same interface for 
register access and IRQ handling as the ISS

! Extension of the interfaces to enable buffer transfer but also 
provide word access for TLM backward compatibility

! The HW/SW interface need to provide an abstract register 
interface for package transfer
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Dataflow Abstraction Methodology
Native Software Execution � EMU CPU

! The main program of the C 
software and the ISR is 
started in the context of an 
SC_THREAD

! Contains a C/C++ wrapper 
to provide bus access 
functions for the C software 
(read_bus, write_bus)

! The bus access blocks the 
main_c software execution in 
case of active interrupts
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Dataflow Abstraction Methodology
HW/SW Interface Abstraction

! EMU CPU model is extended 
by the write_bus_pkg and 
read_bus_pkg functions for 
buffer access

! Request and response 
classes extended by a 
package pointer and a 
package size member

! The HW/SW interface is 
extended by get_REG_pkg
and set_REG_pkg functions

! The OS device drivers 
directly pass the buffers of 
the application SW to the 
HW by calling the functions 
for package transfer
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Dataflow Abstraction Methodology
Core Interface Abstraction

! Currently queues 
are used for 
algorithm 
synchronization

! Now algorithms 
can process the 
data buffers 
directly

! Payload of HW 
interfaces is 
extended by the 
package pointer 
and a the package 
size
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Dataflow Abstraction Methodology
Demonstration Model

! Development of three 
different virtual 
prototypes

! Each VP contains a 
CPU, BUS, ICU, AES 
encoder/decoder, and a 
serial console 
connected to a SIF

BUS

RAM

CPU ICU

AES SIF

OUT/KBD

! ISS_VP

# CPU is a SystemC MIPS ISS

! EMU_VP

# CPU is an EMU CPU without package interface

! HWSW_VP

# CPU is an EMU CPU with package interface
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Experimental Results
Test Applications

! Hardware peripherals:

# AES encoder/decoder supports packages with the maximum of 
16 bytes

# SIF has no package size restriction, packages are passed 
completely to the serial console

! Software applications:

# IO Test: large buffers, no SW- and HW algorithms

# AES Test: small buffers, HW algorithms, no SW algorithms

# MIXED Test: SW- and HW algorithms, small and large buffers
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Experimental Results
Simulation Performance Results

! ISS vs. native software execution (EMU_VP) shows a 
performance gain factor of about 20x

! IO test shows fast performance of the HWSW_VP using large 
buffer sizes (compiler can optimize)

! AES test shows a small performance gain, because of the small 
buffers and the dominant AES algorithm

! The MIXED test can be considered as a common use case 

" The HWSW_VP is more than 10x faster than the EMU_VP

3,6 (13)32,5 (2,6)0,2 (249)HWSW_VP

48,0 (25)84,9 (19)49,9 (21)EMU_VP

1206,51632,71048,6ISS_VP

MIXED [s]AES [s]IO [s]
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Summary

! The 3G modem virtual prototype was introduced as an industrial 
use-case example to show the need for a new methodology

! An abstract view of an embedded HW/SW system was used to 
introduce the data flow abstraction methodology

! A SystemC EMU CPU model was introduced which enables 
further HW/SW interface abstractions

! The extension of the HW/SW, register and core interfaces was 
explained to provide package transfer for the application buffers

! Finally, experimental results were presented which show that the
data flow abstracted VP is more than 10x faster than the 
EMU_VP and more than 200x faster than the ISS_VP 
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Outlook & Current Work

! The abstraction of the control flow to ease and speed-up the 
configuration of HW algorithms is in progress

! A prototype of a central and configurable performance model to 
provide timing information has been developed

! Future work will focus on the development of a methodology for 
automated timing annotations of the native software execution
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