
Using a Dataflow abstracted
Virtual Prototype for HdS-Design

Wolfgang Ecker Stefan Heinen Michael Velten

Infineon Technologies AG

Germany

ASPDAC 2009 Special Session

Hardware-dependent Software
for Multi- and Many-Core Embedded Systems

Page 2ASPDAC 200920.01.2009

Motivation

! Improvement of execution speed of current VP solution of more
than factor 10, i.e., reduce simulation time from 1 h " 5 min

! Provide higher abstracted TLM+ modeling style (to achieve
performance) which is compatible and interchangeable with
today's VP modeling

! Ease the integration and reuse of algorithm models

Page 3ASPDAC 200920.01.2009

Table of contents

! Introductive 3G Modem VP

! Embedded HW/SW Systems

! Dataflow Abstraction Methodology

! Experimental Results

! Summary

! Outlook & Current Work

Page 4ASPDAC 200920.01.2009

Introductive 3G Modem VP
Basic Structure of the VP Models

! Bus interface handling,
register accesses, reset,
clock, interrupts

! State machine (S1-S4)
controlled via the bus
interface

! Optionally, a signal processing
unit containing the reused
algorithm models

BUS INTERFACE

S4
S3

S2

S1

SIGNAL PROCESSING

Page 5ASPDAC 200920.01.2009

Introductive 3G Modem VP
Structure of the 3G Modem VP

! Backbone components: ISS, memories, bridges, and busses

! System control: SCU, ICU, memory control, and timer

! High cycle accuracy, bit exact data path simulation

! 3G physical layer testbench and regression suite

! VP simulation speed: 1/300 (max simulation time 5 minutes)

uC SUBSYSTEM

BUS SUBSYSTEM

SIGNAL PROCESSING
DATA PATH
DIRECT

BUS INTERFACE

S4
S3

S2

S1

SIGNAL PROCESSING

BUS INTERFACE

S4
S3

S2

S1

ISS

RAM

ROM

Page 6ASPDAC 200920.01.2009

Introductive 3G Modem VP
VP Platform

! 3G modem integrated with application HW into one SoC

! Execution of 3G protocol stack and further application SW

! Drawbacks: High cycle accuracy and bit exact data path

! Resulting simulation time up to 1 hour is not acceptable

" A new methodology beyond TLM is required
3G MODEM

uC SUBSYSTEM

SIGNAL PROCESSING
DATA PATH
DIRECT

ISS

RAM

ROM

uC SUBSYSTEM

BUS INTERFACE

S4
S3

S2

S1

BUS INTERFACE

S4
S3

S2

S1

PLATFORM BUS

BUS INTERFACE

S4
S3

S2

S1

SIGNAL PROCESSING

BUS INTERFACE

S4
S3

S2

S1

BUS SUBSYSTEM

ISS

RAM

ROM

Page 7ASPDAC 200920.01.2009

Embedded HW/SW System
Abstract View (Bottom-Up)

! Hardware core incorporates
functionality of a HW device

! Core interface offers internal
access to the HW registers

! Hardware registers enable software
access to the hardware

! HW/SW interface provides SW
access to the HW registers

! OS offers an IO subsystem with a
device driver interface

! OS interface offers with its IO
subsystem access to HW devices

! Application SW runs on top of the
operation system

APPLICATION

LIBRARIES

OPERATING SYSTEM

HARDWARE REGISTERS

DRIVERS

REGISTER MODELS

HW/SW INTERFACE

OS INTERFACE

H A R D W A R E C O R E S

STATE MACHINES

CORE INTERFACE

Page 8ASPDAC 200920.01.2009

Embedded HW/SW System
Dataflow Abstraction

APPLICATION

LIBRARIES

OPERATING SYSTEM

HARDWARE REGISTERS

DRIVERS

REGISTER MODELS

HW/SW INTERFACE

OS INTERFACE

H A R D W A R E C O R E S

STATE MACHINES

CORE INTERFACE

DATA
WORDS

DATA
BUFFER

DATA
BUFFER

DATA
BUFFER

DATA
BUFFER

DATA
BUFFER

TLM TLM+
DATA FLOW ABSTRACTION

Page 9ASPDAC 200920.01.2009

Dataflow Abstraction Methodology
Requirements

! ISS including its compiler does not provide HW/SW interface
abstraction " native software execution required

! Development of a CPU model which offers the same interface for
register access and IRQ handling as the ISS

! Extension of the interfaces to enable buffer transfer but also
provide word access for TLM backward compatibility

! The HW/SW interface need to provide an abstract register
interface for package transfer

Page 10ASPDAC 200920.01.2009

Dataflow Abstraction Methodology
Native Software Execution � EMU CPU

! The main program of the C
software and the ISR is
started in the context of an
SC_THREAD

! Contains a C/C++ wrapper
to provide bus access
functions for the C software
(read_bus, write_bus)

! The bus access blocks the
main_c software execution in
case of active interrupts

readwrite

BUS
IFC

wait_i

read_buswrite_buswait_irq

IRQ
IFC

C/C++ Wrapper

IRQ Logic

SC_THREAD: sw_c

main_c

SC_THREAD: sw_isr

isr

SC_MODULE EMUCPU

Page 11ASPDAC 200920.01.2009

Dataflow Abstraction Methodology
HW/SW Interface Abstraction

! EMU CPU model is extended
by the write_bus_pkg and
read_bus_pkg functions for
buffer access

! Request and response
classes extended by a
package pointer and a
package size member

! The HW/SW interface is
extended by get_REG_pkg
and set_REG_pkg functions

! The OS device drivers
directly pass the buffers of
the application SW to the
HW by calling the functions
for package transfer

read
read_pkg

write
write_pkg

BUS
IFC

wait_i

read_bus
read_bus_pkg

write_bus
write_bus_pkg

wait_irq

IRQ
IFC

C/C++ Wrapper

IRQ Logic

SC_THREAD: sw_c

main_c

SC_THREAD: sw_isr

isr

SC_MODULE EMUCPU

Page 12ASPDAC 200920.01.2009

Dataflow Abstraction Methodology
Core Interface Abstraction

! Currently queues
are used for
algorithm
synchronization

! Now algorithms
can process the
data buffers
directly

! Payload of HW
interfaces is
extended by the
package pointer
and a the package
size

R
eg

is
te

r
In

te
rf

ac
e

H
W

 I
n
te

rf
ac

eAlgorithm

Algorithm
Control

data
words

queue queue

data
words

data
words

A
b
st

ra
ct

 R
eg

is
te

r
In

te
rf

ac
e

A
b
st

ra
ct

 I
n
te

rf
ac

e

Algorithm

Algorithm
Control

data
buffer

data
words

data
buffer

TLM Module � No Dataflow Abstraction

TLM+ Module � With Dataflow Abstraction

Page 13ASPDAC 200920.01.2009

Dataflow Abstraction Methodology
Demonstration Model

! Development of three
different virtual
prototypes

! Each VP contains a
CPU, BUS, ICU, AES
encoder/decoder, and a
serial console
connected to a SIF

BUS

RAM

CPU ICU

AES SIF

OUT/KBD

! ISS_VP

CPU is a SystemC MIPS ISS

! EMU_VP

CPU is an EMU CPU without package interface

! HWSW_VP

CPU is an EMU CPU with package interface

Page 14ASPDAC 200920.01.2009

Experimental Results
Test Applications

! Hardware peripherals:

AES encoder/decoder supports packages with the maximum of
16 bytes

SIF has no package size restriction, packages are passed
completely to the serial console

! Software applications:

IO Test: large buffers, no SW- and HW algorithms

AES Test: small buffers, HW algorithms, no SW algorithms

MIXED Test: SW- and HW algorithms, small and large buffers

Page 15ASPDAC 200920.01.2009

Experimental Results
Simulation Performance Results

! ISS vs. native software execution (EMU_VP) shows a
performance gain factor of about 20x

! IO test shows fast performance of the HWSW_VP using large
buffer sizes (compiler can optimize)

! AES test shows a small performance gain, because of the small
buffers and the dominant AES algorithm

! The MIXED test can be considered as a common use case

" The HWSW_VP is more than 10x faster than the EMU_VP

3,6 (13)32,5 (2,6)0,2 (249)HWSW_VP

48,0 (25)84,9 (19)49,9 (21)EMU_VP

1206,51632,71048,6ISS_VP

MIXED [s]AES [s]IO [s]

Page 16ASPDAC 200920.01.2009

Summary

! The 3G modem virtual prototype was introduced as an industrial
use-case example to show the need for a new methodology

! An abstract view of an embedded HW/SW system was used to
introduce the data flow abstraction methodology

! A SystemC EMU CPU model was introduced which enables
further HW/SW interface abstractions

! The extension of the HW/SW, register and core interfaces was
explained to provide package transfer for the application buffers

! Finally, experimental results were presented which show that the
data flow abstracted VP is more than 10x faster than the
EMU_VP and more than 200x faster than the ISS_VP

Page 17ASPDAC 200920.01.2009

Outlook & Current Work

! The abstraction of the control flow to ease and speed-up the
configuration of HW algorithms is in progress

! A prototype of a central and configurable performance model to
provide timing information has been developed

! Future work will focus on the development of a methodology for
automated timing annotations of the native software execution

Page 18ASPDAC 200920.01.2009

