

A Multilevel Analytical Placement for 3D ICs

Jason Cong^{1,2} & Guojie Luo¹ ¹UCLA Computer Science Department ²California NanoSystems Institute { cong, gluo } @ cs.ucla.edu

This work is partially supported by IBM (under a DARPA subcontract) and NSF

3D Integration

Example (MIT Lincoln Lab 180nm SOI technology)

- A collection of *tiers*
- Through-silicon via (TSV)

Basic 3D Placement Problem

Variables

- (x_i,y_i,z_i), i=1,2,...,n
- cell i is placed at (x_i,y_i) on the tier z_i

Objective

- $\sum_{e} WL_{e}(x,y,z) = HPWL_{(x,y)} + \alpha_{TSV} HPWL_{z}$
- To minimize weighted wirelength

Constraint

no overlap between cells

Previous Works on 3D Placement

- Force-directed method
 - Goplen & Sapatnekar, ICCAD'03]
- Partitioning-based method
 - Goplen & Sapatnekar, DAC'07]
- Quadratic modeling of density cost through DCT
 - [Yan et al., Integration'09]
- 2D to 3D transformation method
 - [Cong et al., ASPDAC'07]

Motivations

3D placement tool

- Trade-offs between wirelength and TSV
- Flexible to integrate other objective function and constraints
- High-quality and scalable
- To study analytical placement

Our Contributions

Analytical formulation with a novel density penalty function

- Based on multiple-tier 2D density penalty functions
- Introduce pseudo-layers, so that minimization of penalties on tiers and pseudo tiers guarantees a legal 3D placement

Adaption of multilevel method

- Provides extra TSV reduction in addition to increasing the TSV weight
- Improvements compared to 2D to 3D transformation
 - (best wirelength cases) 2% shorter wirelength and 29% fewer TSV
 - (best TS via cases) 20% shorter wirelength and 50% fewer TSV

Basic 3D Placement Problem

Variables

- (x_i,y_i,z_i), i=1,2,...,n
- cell i is placed at (x_i,y_i) on the tier z_i

Objective

- $\sum_{e} WL_{e}(x,y,z) = HPWL_{(x,y)} + \alpha_{TSV} HPWL_{z}$
- To minimize weighted wirelength

Constraint

no overlap between cells

1

$$\Psi L_e(x, y, z) = \left(\max_{v_i, v_j \in e} \left| x_i - x_j \right| + \max_{v_i, v_j \in e} \left| y_i - y_j \right| \right) + \alpha_{TSV} \cdot \max_{v_i, v_j \in e} \left| z_i - z_j \right|$$

1

$$\Psi L_e(x, y, z) = \left(\max_{v_i, v_j \in e} \left| x_i - x_j \right| + \max_{v_i, v_j \in e} \left| y_i - y_j \right| \right)$$

2D HPWL

$$\Psi L_e(x, y, z) = \left(\max_{v_i, v_j \in e} \left| x_i - x_j \right| + \max_{v_i, v_j \in e} \left| y_i - y_j \right| \right) + \alpha_{TSV} \cdot \max_{v_i, v_j \in e} \left| z_i - z_j \right|$$

Model TSV by a length of wire

- For example [Davis et al., DTC'05]
 - MIT Lincoln Lab 180 nm 3D SOI technology
 - 3 μm thick TSV ≈ 8 to 20 μm metal 2 wire, in terms of capacitance
 - 3 μ m thick TSV \approx 0.2 μ m metal 2 wire, in terms of resistance

Another case

- Tier 1 and tier 2: face-to-face
- Tier 2 and tier 3: back-to-back
- Different weights between tiers

Practical weighed wirelength

$$WL_{e}(x, y, z) = (1 + p_{e}) \left(\max_{v_{i}, v_{j} \in e} \left| x_{i} - x_{j} \right| + \max_{v_{i}, v_{j} \in e} \left| y_{i} - y_{j} \right| \right)$$
$$+ (1 + q_{e}) \cdot \alpha_{TSV} \cdot \max_{v_{i}, v_{j} \in e} \left| z_{i} - z_{j} \right|$$

- Additional net weights p_e and q_e to model and optimize performance or temperature [Goplen & Sapatnekar, DAC'07]
- It is a convex function w.r.t. (x,y,z)
- Such weighted wirelength is the form of objective function in the 3D placement problem formulation

Analytical Engine

Discrete tier assignment

discrete (legalized solution)						

Relaxed tier assignment

relaxed (intermediate solution)

Variables

- (x_i,y_i,z_i), i=1,2,...,n
- cell i is placed at (x_i,y_i) on the tier z_i

Analytical Engine	
 Discrete tier assignment 	 Relaxed tier assignment
discrete (legalized solution)	relaxed (intermediate solution)

Formulate 3D placement problem as continuous optimization

minimize $\sum_{e} WL_{e}(x, y, z)$

subject to (no overlap between cells)

Non-overlap Constraints

- Relaxed by area density constraints
 - Divide the placement region into bins
 - Measure the overflow of bin area to capture cell overlaps
 - Cell overlaps in overflow bins violate density constraints
 - Cell overlaps not in overflow bins do not violate density constraints

Non-overlap Constraint

Replaced by area density constraint

- Divide the placement region into bins
- Measure the overflow of bin area to capture cell overlaps

Non-overlap Constraint

Replaced by area density constraint

- Divide the placement region into bins
- Measure the overflow of bin area to capture cell overlaps

minimize
$$\sum_{e} WL_{e}(x, y, z)$$

subject to (no overlap between cells)
 $\int_{e} WL_{e}(x, y, z)$
minimize $\sum_{e} WL_{e}(x, y, z)$
subject to $A_{i, j, k}(x, y, z) = C_{i, j, k}$
for all i, j, k
UCLA VLSICAD LAB

add filler cells

[Chan et al., ISPD'06]

Replaced by area density constraint

- Divide the placement region into bins
- Measure the overflow of bin area to capture cell overlaps

~

minimize
$$\sum_{e} WL_{e}(x, y, z)$$

subject to $A_{i,j,k}(x, y, z) = C_{i,j,k}$ for all i, j, k
 \bigcup
minimize $\sum_{e} WL_{e}(x, y, z) + \frac{\mu}{2} \sum_{k} \sum_{i,j} (A_{i,j,k}(x, y, z) - C_{i,j,k})^{2}$
increase μ until overlaps are removed. [New & Cong Springer'07]

increase μ until overlaps are removed

[Nam & Cong, Springer'07] [Cong & Luo, ISPD'08]

UCLA VLSICAD LAB

20

Non-overlap Constraint

Replaced by area density constraint

- Divide the placement region into bins
- Measure the overflow of bin area to capture cell overlaps

Area projection to obtain bin densities from intermediate solution

Non-overlap Constraint

Replaced by area density constraint

- Divide the placement region into bins
- Measure the overflow of bin area to capture cell overlaps

Area projection to obtain bin densities from intermediate solution

Area projection to obtain bin densities

from intermediate solution

22

Non-overlap Constraint

- Replaced by area density constraint
 - Divide the placement region into bins
 - Measure the overflow of bin area to capture cell overlaps

Divide the placement region into bins

Non-overlap Constraint

 Measure the overflow of bin area to capture cell overlaps

Replaced by area density constraint

Area projection to obtain bin densities from intermediate solution

Area Projection

Bell-shaped function to project area

$$\eta(k,z) = \begin{cases} 1-2(z-k)^2 & |z-k| \le 1/2 \\ 2(|z-k|-1)^2 & 1/2 < |z-k| \le 1 \\ 0 & \text{otherwise} \end{cases} \begin{array}{c} \eta(k,z) \text{ - The projection ratio} \\ \text{from "tier z" to tier k} \\ \eta(1,z) & \eta(2,z) & \eta(3,z) & \eta(4,z) \end{cases}$$

$$Ai, j, k(x, y, z) \\ = \sum_{v \in V} A_{i,j}(x_v, y_v) \cdot \eta(k, z_v) \\ = \sum_{v \in V} A_{i,j}(x_v, y_v) \cdot \eta(k, z_v) \end{array}$$

Area Projection

Bell-shaped function to project area

$$\eta(k,z) = \begin{cases} 1 - 2(z-k)^2 & |z-k| \le 1/2 \\ 2(|z-k|-1)^2 & 1/2 < |z-k| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

An Example

- Intermediate placement of a cell at "tier 2.316"
- Projects 0% area to tier 1
- Projects 80% area to tier 2
- Projects 20% area to tier 3
- Projects 0% area to tier 4

Area Projection

Bell-shaped function to project area

$$\eta(k,z) = \begin{cases} 1 - 2(z-k)^2 & |z-k| \le 1/2 \\ 2(|z-k|-1)^2 & 1/2 < |z-k| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

An Example

- Intermediate placement of a cell at "tier 2.316"
- Projects 0% area to tier 1
- Projects 80% area to tier 2
- Projects 20% area to tier 3
- Projects 0% area to tier 4

 $\eta(k,z)$ - The projection ratio from "tier z" to tier k $\eta(1,z)$ $\eta(2,z)$ $\eta(3,z)$ $\eta(4,z)$ 1.0 0.8 0.6 0.4 0.2 0.0

Equivalence to Non-overlap Constraint

Area projection to tiers is not enough

Counter example: projected area failed to capture illegality

Solution: area projection on pseudo-tiers

overflow

Equivalence to Non-overlap Constraint

Theorem: (x,y,z) satisfy the constraints

$$\begin{cases} A_{i,j,k}(x, y, z) = C_{i,j,k} \\ A'_{i,j,k}(x, y, z) = C'_{i,j,k} \end{cases} \text{ for all } i, j, k \end{cases}$$

if.f. (x,y,z) is a legal placement (no overlaps)

** after adding filler cells

Equivalence to Non-overlap Constraint

Theorem: (x,y,z) is a minimizer of the function:

$$\frac{\mu}{2} \sum_{k} \sum_{i,j} (A_{i,j,k}(x,y,z) - C_{i,j,k})^2$$

+
$$\frac{\mu}{2} \sum_{k} \sum_{i,j} (A'_{i,j,k}(x,y,z) - C'_{i,j,k})^2$$

if.f. (x,y,z) is a legal placement (no overlaps)

** after adding filler cells

Analytical Engine

• minimize $\sum_{e} WL_{e}(x, y, z)$

$$+\frac{\mu}{2}\sum_{k}\sum_{i,j}(A_{i,j,k}(x,y,z)-C_{i,j,k})^{2}$$
$$+\frac{\mu}{2}\sum_{k}\sum_{i,j}(A_{i,j,k}'(x,y,z)-C_{i,j,k}')^{2}$$

increase μ until overlaps are removed

- $A_{i,j,k}(x, y, z)$: area projected in bin (*i*,*j*) of tier k
- $C_{i,j,k}$: area capacitance on tier k
- $A'_{i,j,k}(x, y, z)$: area projected in bin (*i*,*j*) of pseudo-tier k
- $C'_{i,j,k}$: area capacitance on pseudo-tier k

Multilevel Framework

- Level at which analytical engine is applied
- C Coarsening
 - Interpolation

Experimental Results (1/2)

Comparison of trade-off curves (ibm13)

19% shorter WL

9% fewer TSV

than

15% shorter WL
 43% fewer TSV
 than

(consistent behavior on other circuits)

Experimental Results (2/2)

The ability to reduce the TSV number

	3-Level Placement			4-way Mincut		
Circuit	GP WL	DP WL	#TSV	cutsize	#TSV	
	(x 10 ⁷)	(x 10 ⁷)	(x 10 ³)	(x 10 ³)	(x 10 ³)	
ibm01	0.39	0.39	0.92	0.35	0.42	
ibm03	0.92	0.91	2.10	1.28	2.02	
ibm04	1.36	1.31	2.01	1.41	1.89	
ibm06	1.67	1.62	2.60	1.63	2.63	
ibm07	2.79	2.70	2.72	2.13	2.97	
ibm08	2.99	2.89	2.83	2.02	2.60	
ibm09	2.36	2.29	2.47	1.35	1.90	
ibm13	5.02	4.89	3.20	1.62	2.21	
ibm15	12.05	11.40	8.27	4.20	6.19	
ibm18	18.36	17.37	9.82	2.95	4.68	
geo-mean	2.66	2.58	2.95	1.61	2.29	

Summary

Non-overlap constraints

- Handled by a novel area projection method
- Pseudo-tiers added for equivalence to non-overlap constraints
- Multilevel framework
 - Effective to reduce TS via number
- Trade-offs between WL and #TSV
 - 12% shorter WL and 29% fewer TSV
 - Compared to the 2D to 3D transformation method with best WL
 - 20% shorter WL and 50% fewer TSV
 - Compared to the 2D to 3D transformation method with best TSV

Thank you!

UCLA VLSICAD LAB