Fast Circuit Simulation on Graphics Processing Units

Kanupriya Gulati†
John F. Croix‡
Sunil P. Khatri†
Rahm Shastry‡

† Texas A&M University, College Station, TX
‡ Nascentric, Inc. Austin, TX
Outline

- Introduction
- CUDA programming model
- Approach
- Experiments
- Conclusions
Introduction

- SPICE is the de facto industry standard for VLSI circuit simulations
- Significant motivation for accelerating SPICE simulations without losing accuracy
 - Increasing complexity and size of VLSI circuits
 - Increasing impact of process variations on the electrical behavior of circuits
 - Require Monte Carlo based simulations
- We accelerate the computationally expensive portion of SPICE – **transistor model evaluation** – on Graphics Processing Units (GPUs)
- Our approach is **integrated into a commercial SPICE accelerator tool** OmegaSIM (already 10-1000x faster than traditional SPICE implementations)
- With our approach, OmegaSIM achieves a **further speedup** of **2.36X (3.07X) on average (max)**
Introduction

- GPU – a commodity stream processor
 - Highly parallel
 - Very fast
 - Single Instruction Multiple Data (SIMD) operation
- GPUs, owing to their **massively parallel architecture**, have been used to accelerate several **scientific computations**
 - Image/stream processing
 - Data compression
 - Numerical algorithms
 - LU decomposition, FFT etc
- For our implementation we used
 - NVIDIA GeForce 8800 GTS (128 processors, 16 multiprocessors)
 - Compute Unified Device Architecture (CUDA)
 - For programming and interfacing with the GPU
CUDA Programming Model

- The GPU is viewed as a compute device that:
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel

Diagram:
- Host (CPU)
- Device (GPU)
- Kernel
- PCIe
- Threads (instances of the kernel)
- Device Memory
Thread Batching: Grids and Blocks

- A kernel is executed as a **grid of thread blocks** (aka blocks)
 - All threads within a block share a portion of data memory

- A **thread block** is a batch of threads that can **cooperate** with each other by:
 - Synchronizing their execution
 - For hazard-free common memory accesses
 - Efficiently sharing data through a low latency **shared memory**

- Two threads from two different blocks cannot cooperate

Source: “NVIDIA CUDA Programming Guide” version 1.1
Device Memory Space Overview

- Each thread has:
 - R/W per-thread **registers** (max. 8192 registers/MP)
 - R/W per-thread **local memory**
 - R/W per-block **shared memory**
 - R/W per-grid **global memory**
 - Main means of communicating data between host and device
 - Contents visible to all threads
 - Not cached, coalescing needed

- Read only per-grid **constant memory**
 - Cached, visible to all threads

- Read only per-grid **texture memory**
 - Cached, visible to all threads

- The host can R/W **global**, **constant** and **texture** memories
Approach

- We first profiled SPICE simulations over several benchmarks
 - **75% of time spent in BSIM3 device model evaluations**
 - Billions of calls to device model evaluation routines
 - Every device in the circuit is evaluated for every time step
 - Possibly repeatedly until the Newton Raphson loop for solving non-linear equations converges
 - **Asymptotic speedup of 4X** considering Amdahl’s law.
- These **calls are parallelizable**
 - Since they are independent of each other
 - Each call performs identical computations on different data
 - **Conform to the GPU’s SIMD operating paradigm**
Approach

- **CDFG-guided manual partitioning** of BSIM3 evaluation code

 - **Limitation on the available hardware resources**
 - Registers (8192/per multiprocessor)
 - Shared Memory (16KB/per multiprocessor)
 - Bandwidth to global memory (max. sustainable is ~80 GB/s)

 - **If entire BSIM3 model is implemented as a single kernel**
 - Number of threads that can be issued in parallel are not enough
 - To hide global memory access latency

 - **If BSIM3 code is partitioned into many (small) kernels**
 - Requires large amounts of data transfer across kernels
 - Done using global memory (not cached)
 - Negatively impacts performance

 - So, in our approach, we:
 - Create CDFG of the BSIM3 equations
 - **Use maximally disconnected components** of this graph as different kernels, considering the above hardware limitations
Approach

- Vectorizing ‘if-else’ statements
 - BSIM3 model evaluation code has nested if-else statements
 - For a SIMD computation - they are restructured using masks
 - **CUDA compiler has inbuilt ability to restructure** these statements

```plaintext
if( A < B )
    x = v1 + v2;
else
    x = v1 * v2;
```
Approach

- Take GPU memory constraints into account

 - **Global Memory**
 - Used to *store intermediate data* – which is generated by one kernel and needed by another
 - Instead of transferring this data to host

 - **Texture Memory**
 - Used for *storing ‘runtime parameters’*
 - Device parameters which remain unchanged throughout the simulation

 - Advantages
 - It is *cached*, unlike global memory
 - **No coalescing** requirements, unlike global memory
 - **No bank conflicts**, such as possible in shared memory
 - CUDA’s efficient *built in texture fetching routines* are used
 - Small texture memory loading overhead is easily amortized
Experiments

- Our device model evaluation is implemented and integrated into a commercial SPICE accelerator tool – **OmegaSIM**
 - Modified version of OmegaSIM referred to as AuSIM
- Hardware used:
 - CPU: Intel Core 2 Quad, 2.4 GHz, 4GB RAM
 - GPU: NVIDIA GeForce 8800 GTS, 128 Processors, 675 MHz, 512 MB RAM
- **Comparing BSIM3 model evaluation alone**

<table>
<thead>
<tr>
<th># Eval</th>
<th>GPU runtimes (ms)</th>
<th>CPU runtimes (ms)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>81.17</td>
<td>196.48</td>
<td>277.65</td>
</tr>
<tr>
<td>2M</td>
<td>184.91</td>
<td>258.79</td>
<td>443.7</td>
</tr>
</tbody>
</table>
Experiments - Complete SPICE Sim.

<table>
<thead>
<tr>
<th>Ckt. Name</th>
<th># Trans.</th>
<th>Total # Evals.</th>
<th>OmegaSIM (s) CPU-alone</th>
<th>AuSIM (s) GPU+CPU</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial_1</td>
<td>324</td>
<td>1.86 X 10^7</td>
<td>49.96</td>
<td>34.06</td>
<td>1.47X</td>
</tr>
<tr>
<td>Industrial_2</td>
<td>1098</td>
<td>2.62 X 10^9</td>
<td>118.69</td>
<td>38.65</td>
<td>3.07X</td>
</tr>
<tr>
<td>Industrial_3</td>
<td>1098</td>
<td>4.30 X 10^8</td>
<td>725.35</td>
<td>281.5</td>
<td>2.58X</td>
</tr>
<tr>
<td>Buf_1</td>
<td>500</td>
<td>1.62 X 10^7</td>
<td>27.45</td>
<td>20.26</td>
<td>1.35X</td>
</tr>
<tr>
<td>Buf_2</td>
<td>1000</td>
<td>5.22 X 10^7</td>
<td>111.5</td>
<td>48.19</td>
<td>2.31X</td>
</tr>
<tr>
<td>Buf_3</td>
<td>2000</td>
<td>2.13 X 10^8</td>
<td>486.6</td>
<td>164.96</td>
<td>2.95X</td>
</tr>
<tr>
<td>ClockTree_1</td>
<td>1922</td>
<td>1.86 X 10^8</td>
<td>345.69</td>
<td>132.59</td>
<td>2.61X</td>
</tr>
<tr>
<td>ClockTree_2</td>
<td>7682</td>
<td>1.92 X 10^8</td>
<td>458.98</td>
<td>182.88</td>
<td>2.51X</td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td></td>
<td>2.36X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- With increase in number of transistors, speedup obtained is higher
- More device evaluation calls made in parallel, latencies are better hidden
- High accuracy with single precision floating point implementation
- Over 1M device evals. avg. (max.) error of 2.88 X 10^{-26} (9.0 X 10^{-22}) Amp.
- Newer devices with double precision capability already in market
Conclusions

- Significant interest in accelerating SPICE
- 75% of the SPICE runtime spent in BSIM3 model evaluation – allows asymptotic speedup of 4X
- Our approach of accelerating model evaluation using GPUs has been implemented and integrated with a commercial fast SPICE tool
 - Obtained speedup of 2.36 X on average.
- BSIM3 model evaluation can be sped up by 30-40X over 1M-2M calls
- With a more complicated model like BSIM4
 - Model evaluation would possibly take a yet larger fraction of SPICE runtime
 - Our approach would likely provide a higher speedup
- With increase in number of transistors, a higher speedup is obtained