
Fast Circuit Simulation on 
Graphics Processing Units

Kanupriya Gulati†

John F. Croix‡

Sunil P. Khatri†
Rahm Shastry‡

† Texas A&M University, College Station, TX
‡ Nascentric, Inc. Austin, TX



Outline

Introduction
CUDA programming model
Approach 
Experiments
Conclusions



Introduction
SPICE is the de facto industry standard for VLSI 
circuit simulations 
Significant motivation for accelerating SPICE 
simulations without losing accuracy

Increasing complexity and size of VLSI circuits 
Increasing impact of process variations on the electrical 
behavior of circuits

Require Monte Carlo based simulations
We accelerate the computationally expensive portion 
of SPICE – transistor model evaluation – on 
Graphics Processing Units (GPUs)
Our approach is integrated into a commercial 
SPICE accelerator tool OmegaSIM (already 10-
1000x faster than traditional SPICE implementations)
With our approach, OmegaSIM achieves a further 
speedup of 2.36X (3.07X) on average (max)



Introduction
GPU – a commodity stream processor

Highly parallel 
Very fast
Single Instruction Multiple Data (SIMD) operation

GPUs, owing to their massively parallel architecture, 
have been used to accelerate several scientific 
computations

Image/stream processing
Data compression
Numerical algorithms

LU decomposition, FFT etc
For our implementation we used

NVIDIA GeForce 8800 GTS (128 processors, 16 
multiprocessors)
Compute Unified Device Architecture (CUDA)

For programming and interfacing with the GPU



CUDA Programming Model
The GPU is viewed as a compute device that:

Is a coprocessor to the CPU or host
Has its own DRAM (device memory)
Runs many threads in parallel
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Thread Batching: Grids and Blocks
A kernel is executed as a grid 
of thread blocks  (aka blocks)

All threads within a block share 
a portion of data memory

A thread block is a batch of 
threads that can cooperate with 
each other by:

Synchronizing their execution
For hazard-free common 
memory accesses

Efficiently sharing data through 
a low latency shared memory

Two threads from two different 
blocks cannot cooperate
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Source : “NVIDIA CUDA Programming Guide” version 1.1



Device Memory Space Overview
Each thread has:

R/W per-thread registers (max. 
8192 registers/MP)
R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Main means of communicating data 
between host and device
Contents visible to all threads
Not cached, coalescing needed

Read only per-grid constant 
memory

Cached, visible to all threads
Read only per-grid texture 
memory

Cached, visible to all threads
The host can R/W global, 
constant and texture memories
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Source : “NVIDIA CUDA Programming Guide” version 1.1



Approach
We first profiled SPICE simulations over several benchmarks

75% of time spent in BSIM3 device model evaluations
Billions of calls to device model evaluation routines

Every device in the circuit is evaluated for every time step
Possibly repeatedly until the Newton Raphson loop for solving  non-
linear equations converges

Asymptotic speedup of 4X considering Amdahl’s law.
These calls are parallelizable

Since they are independent of each other
Each call performs identical computations on different data

Conform to the GPU’s SIMD operating paradigm



Approach
CDFG-guided manual partitioning of BSIM3 
evaluation code

Limitation on the available hardware resources
Registers (8192/per multiprocessor)
Shared Memory (16KB/per multiprocessor)
Bandwidth to global memory (max. sustainable is ~80 GB/s)

If entire BSIM3 model is implemented as a single kernel
Number of threads that can be issued in parallel are not enough

To hide global memory access latency

If BSIM3 code is partitioned into many (small) kernels
Requires large amounts of data transfer across kernels

Done using global memory (not cached)

Negatively impacts performance

So, in our approach, we:
Create CDFG of the BSIM3 equations
Use maximally disconnected components of this graph as 
different kernels, considering the above hardware limitations



Approach
Vectorizing ‘if-else’ statements

BSIM3 model evaluation code has nested if-else statements
For a SIMD computation - they are restructured using masks 
CUDA compiler has inbuilt ability to restructure these 
statements
if( A < B )

x = v1 + v2;
else 

x = v1 * v2;
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Approach
Take GPU memory constraints into account

Global Memory
Used to store intermediate data – which is generated by one kernel 
and needed by another

Instead of transferring this data to host

Texture Memory
Used for storing ‘runtime parameters’

Device parameters which remain unchanged throughout the 
simulation

Advantages
It is cached, unlike global memory
No coalescing requirements, unlike global memory
No bank conflicts, such as possible in shared memory
CUDA’s efficient built in texture fetching routines are used
Small texture memory loading overhead is easily amortized



Experiments
Our device model evaluation is implemented and 
integrated into a commercial SPICE accelerator tool –
OmegaSIM

Modified version of OmegaSIM referred to as AuSIM
Hardware used:

CPU: Intel Core 2 Quad, 2.4 GHz, 4GB RAM
GPU: NVIDIA GeForce 8800 GTS, 128 Processors, 675 
MHz, 512 MB RAM 

Comparing BSIM3 model evaluation alone

40.76X18086.29443.7258.79184.912M
32.33X8975.63277.65196.4881.171M

Tot.Tran.Proc.
SpeedupCPU runtimes (ms)GPU runtimes (ms)# Eval.



GPU+CPUCPU-alone

2.36XAvg.
2.51X182.88458.981.92 X 1087682ClockTree_2

2.61X132.59345.691.86 X 1081922ClockTree_1
2.95X164.96486.62.13 X 1082000Buf_3
2.31X48.19111.55.22 X 1071000Buf_2
1.35X20.2627.451.62 X 107500Buf_1
2.58X281.5725.354.30 X1081098Industrial_3
3.07X38.65118.692.62 X 1091098Industrial_2
1.47X34.0649.961.86 X 107324Industrial_1

SpeedupAuSIM (s)OmegaSIM (s)Total #
Evals.

# 
Trans.

Ckt. Name

Experiments - Complete SPICE Sim.

With increase in number of transistors, speedup obtained is higher
More device evaluation calls made in parallel, latencies are better hidden

High accuracy with single precision floating point implementation
Over 1M device evals. avg. (max.) error of 2.88 X 10-26 (9.0 X 10-22) Amp.
Newer devices with double precision capability already in market



Conclusions
Significant interest in accelerating SPICE
75% of the SPICE runtime spent in BSIM3 model 
evaluation – allows asymptotic speedup of 4X
Our approach of accelerating model evaluation using 
GPUs has been implemented and integrated with a 
commercial fast SPICE tool

Obtained speedup of 2.36 X on average.
BSIM3 model evaluation can be sped up by 30-40X 
over 1M-2M calls
With a more complicated model like BSIM4 

Model evaluation would possibly take a yet larger fraction of 
SPICE runtime
Our approach would likely provide a higher speedup 

With increase in number of transistors, a higher 
speedup is obtained 


