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Introduction

SPICE is the de facto industry standard for VLSI
circuit simulations

Significant motivation for accelerating SPICE
simulations without losing accuracy
= Increasing complexity and size of VLSI circuits

= Increasing iImpact of process variations on the electrical
behavior of circuits

= Require Monte Carlo based simulations

We accelerate the computationally expensive portion
of SPICE —transistor model evaluation — on
Graphics Processing Units (GPUS)

Our approach is integrated into a commercial
SPICE accelerator tool OmegaSIM (already 10-
1000x faster than traditional SPICE implementations)

= With our approach, OmegaSIM achieves a further
speedup of 2.36X (3.07X) on average (max)




Introduction

m GPU — a commodity stream processor
= Highly parallel
= Very fast
= Single Instruction Multiple Data (SIMD) operation

m GPUs, owing to their massively parallel architecture,
have been used to accelerate several scientific
computations

= Image/stream processing
= Data compression
= Numerical algorithms
m LU decomposition, FFT etc
= For our implementation we used

= NVIDIA GeForce 8800 GTS (128 processors, 16
multiprocessors)

= Compute Unified Device Architecture (CUDA)
m For programming and interfacing with the GPU




CUDA Programming Model

m The GPU is viewed as a compute device that:
= |s a coprocessor to the CPU or host
= Has its own DRAM (device memory)
= Runs many threads in parallel
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Thread Batching: Grids and Blocks

m A kernel is executed as a grid -
of thread blocks (aka blocks)
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Source : “NVIDIA CUDA Programming Guide” version 1.1



Device Memory Space Overview

m Each thread has:

R/W per-thread registers (max. (Device) Grid
8192 registers/MP)

Block (0, 0) Block (1, 0)
R/W per-thread local memory
R/W per-bIOCk Shared memory Shared Memory Shared Memory
R/W pel’-gl’id gIObaI memory Registers Registers Registers Registers

m Main means of communicating data
between host and device

m Contents visible to all threads
m Not cached, coalescing needed
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= The host can R/W global,
constant and texture memories

Source : “NVIDIA CUDA Programming Guide” version 1.1



Approach

m We first profiled SPICE simulations over several benchmarks
m /5% of time spent in BSIM3 device model evaluations

= Billions of calls to device model evaluation routines
m Every device in the circuit is evaluated for every time step

m Possibly repeatedly until the Newton Raphson loop for solving non-
linear equations converges

s Asymptotic speedup of 4X considering Amdahl’s law.
m These calls are parallelizable
= Since they are independent of each other

= Each call performs identical computations on different data
m Conform to the GPU’s SIMD operating paradigm




Approach

m CDFG-guided manual partitioning of BSIM3
evaluation code

= Limitation on the available hardware resources
m Registers (8192/per multiprocessor)
m Shared Memory (16KB/per multiprocessor)
m Bandwidth to global memory (max. sustainable is ~80 GB/s)

= If entire BSIM3 model is implemented as a single kernel

m Number of threads that can be issued in parallel are not enough
= To hide global memory access latency
= If BSIM3 code is partitioned into many (small) kernels
m Requires large amounts of data transfer across kernels
= Done using global memory (not cached)
= Negatively impacts performance

= S0, In our approach, we:
m Create CDFG of the BSIM3 equations

m Use maximally disconnected components of this graph as
different kernels, considering the above hardware limitations




Approach

m Vectorizing ‘if-else’ statements

= BSIM3 model evaluation code has nested if-else statements
= For a SIMD computation - they are restructured using masks

s CUDA compiler has inbuilt ability to restructure these
statements

if( A<B)

X vl + Vv2;
else

X =vl * v2;
ER

0|0 < 3




Approach

m Take GPU memory constraints into account

= Global Memory

m Used to store intermediate data — which is generated by one kernel
and needed by another

= Instead of transferring this data to host

= Texture Memory
m Used for storing ‘runtime parameters’

= Device parameters which remain unchanged throughout the
simulation

m Advantages
= Itis cached, unlike global memory
= No coalescing requirements, unlike global memory
= No bank conflicts, such as possible in shared memory
s CUDA's efficient built in texture fetching routines are used
= Small texture memory loading overhead is easily amortized




Experiments

m Our device model evaluation is implemented and

iIntegrated into a commercial SPICE accelerator tool —
OmegaSIM

= Modified version of OmegaSIM referred to as AuSIM
= Hardware used:
= CPU: Intel Core 2 Quad, 2.4 GHz, 4GB RAM

m GPU: NVIDIA GeForce 8800 GTS, 128 Processors, 675
MHz, 512 MB RAM

m Comparing BSIM3 model evaluation alone

# Eval. GPU runtimes (ms) CPU runtimes (ms)
Proc. Tran. Tot.
1M 81.17 196.48 277.65 8975.63
24\ 184.91 258.79 443.7 18086.29




Experiments - Complete SPICE Sim.

Ckt. Name # Total # | OmegaSIM (s) | AuSIM (s) | Speedup

Trans. | Evals. CPU-alone |GPU+CPU
Industrial 1 324 1.86 X 107 49.96 34.06 1.47X
Industrial_2 1098 2.62 X 10° 118.69 38.65 3.07X
Industrial_3 1098 4.30 X108 725.35 281.5 2.58X

Buf 1 5100 1.62 X 107 27.45 20.26 1.35X
Buf 2 1000 5.22 X 107 111.5 48.19 2.31X
Buf 3 2000 | 2.13 X 108 486.6 164.96 2. 95X
ClockTree 1 1922 1.86 X 108 345.69 132.59 2.61X

ClockTree 2 | 7682 | 1.92 X 108 458.98 182.88 2 51X
Avg. 2.36X

= With increase in number of transistors, speedup obtained is higher
= More device evaluation calls made in parallel, latencies are better hidden
m High accuracy with single precision floating point implementation
= Over 1M device evals. avg. (max.) error of 2.88 X 1026 (9.0 X 10-2%) Amp.
= Newer devices with double precision capability already in market




Conclusions

m Significant interest in accelerating SPICE

/5% of the SPICE runtime spent in BSIM3 model
evaluation — allows asymptotic speedup of 4X

Our approach of accelerating model evaluation using
GPUs has been implemented and integrated with a
commercial fast SPICE tool

= Obtained speedup of 2.36 X on average.

BSIM3 model evaluation can be sped up by 30-40X
over 1M-2M calls
With a more complicated model like BSIM4

= Model evaluation would possibly take a yet larger fraction of
SPICE runtime

= Our approach would likely provide a higher speedup

= With increase in number of transistors, a higher
Speedup Is obtained




