
Systematic Architecture Exploration
based on Optimistic Cycle Estimationbased on Optimistic Cycle Estimation
for Low Energy Embedded Processors

Ittetsu Taniguchi*, Murali Jayapala**, Praveen Raghavan**,
Francky Catthoor**, Keishi Sakanushi*, Yoshinori Takeuchi*,

and Masaharu Imai*
*Graduate School of IST, Osaka University, JapanGraduate School of IST, Osaka University, Japan

**Nomadic Embedded Systems, IMEC vzw., Belgium

OutlineOutline

• Introduction
• Reconfigurable AGU ModelReconfigurable AGU Model
• Architecture Exploration Problem
• Feature of Solution Space
• Optimistic Cycle Estimation• Optimistic Cycle Estimation
• Experimental Results
• Conclusion and Future Work

2009/1/21 2

Introduction
• High performance and low energy consumption for

Introduction
High performance and low energy consumption for
nomadic embedded systems
– Memory access consumes “time” and “energy”

• Especially for scratch pad memory (SPM)
• High level compiler optimization

Removing unnecessary memory access– Removing unnecessary memory access
– Improving memory access locality

• Next overhead: Address calculationNext overhead: Address calculation
– Address generation unit (AGU) for complex address

calculation

Architecture exploration
f dd i ifor address generation unit

2009/1/21 3

MotivationMotivation
for (x=1; x<=N-2; ++x) { for (y=0; y<=M+2; ++y) {

for (y=1; y<=M-2; ++y) {
for (k=-1; k<=1; ++k) {

A[x][y]+=B[x+k][y]*C[abs(k)];

for (x=0; x<=N+2; ++x) {
if (x>=0 && x<N && y>=1

&& y<=M-2) {[][y] [][y] [()];
A[x][y] /= tot;

}
}

y) {
D[x%3] = B[(y*N+x)%8704+

(y*N+x)%8704*16384+7680];
}}

}
}
if (x-1>=1 && x-1<=N-2

&& y>=1 && y<=M-2) {
for (k=-1; k<=1; ++k) {Before high level for (k 1; k< 1; ++k) {

A[x][y] += D[(x-1+k)%3]
*C[abs(k)];

}

Before high level
compiler optimization

}
}
A[x][y] /= tot;

}

More than 60% of calculations
are “Address Calculation” }

}
2009/1/21 4

After high level
compiler optimization

Related Work
for Address Generation Unit

• Mathew et al., 2004.
– Address generation and loop acceleration for VLIW processors

Limitation:– Limitation:
Only 2D affine address equation: A[i*P+Q][j*R+S]

…
for (i=0; i<N; i++) {

for (i=0; i<N; i++) {
tmp[i] = Images[Macroblock*(ImageMCRef-1)*(IMG_ROWS+IMG_ROWS/2)*IMG_COLS

G O S* G CO S (*)* G CO S/ (*)+ IMG_ROWS*IMG_COLS + (v*M + j)*IMG_COLS/2 + (h*N+i)];
…

}
}

Address calculation
after strong optimization!!!} after strong optimization!!!

More general address generation unit for
2009/1/21 5

More general address generation unit for
VLIW processors

Reconfigurable AGU
• Address calculation can be

Reconfigurable AGU
Address calculation can be
divided into some patterns !!!

• Reconfigurable AGU realizes Addr. Calc.
Pattern 1 re

 !g
one pattern on it

• Effective calculation by changing
pattern Pattern 4

Pattern 3
Pattern 2
Pattern 1

ec
on

fig
ur

pattern
– Reconfigurable AGU changes its

function dynamically
Reconf. AGU

Pattern 4 R
e

y y

Example: Address calculation patterns

+ + + ‐ +

*

+

%

3

2009/1/21 6

+ + * %

Reconfigurable AGU
from Architectural View

VLIW A hit t / AGU VLIW A hit t / AGU

Memory Memory

VLIW Architecture w/o AGU VLIW Architecture w/ AGU

Register File Register FileRegister File Register File

FU0 FU1 FUn-1 FU0 FU1 FUn-1
Reconf.

AGU

AGU as dedicated functional unit
f dd l l i

2009/1/21 7

for address calculation

Reconfigurable AGU Modelg
IN0

0 IN0
1 IN3

0 IN3
1IN1

0 IN1
1 IN2

0 IN2
1

on
ne

ct

MUX0
0 MUX0

1 MUX3
0 MUX3

1

In
te

rc
o

A
G

UMUX1
0 MUX1

1 MUX2
0 MUX2

1

gu
ra

bl
e

A

PE0
add, sub

PE1
add, sub

PE2
mul

PE3
mod

R
ec

on
figReg. Reg. Reg. Reg.

OUT0

R

OUT1 OUT2 OUT3

P t #PE I t ti i t f h PE
2009/1/21 8

Parameters: #PE, Instruction assignment for each PE
 How to evaluate each AGU?

AGU Mapping as Performance Evaluation

0 1 2 3
Target Reconfigurable AGU Spec.

#PE=4;
PE0={(‘+’,1cycle),(‘-’,1cycle)};
PE1 {(‘ ’ 1 l) (‘ ’ 1 l)}

PE

AGU Mapping
FrameworkAdd C l l ti DFG

Mapping Results
and Exec. Cycle

PE1={(‘+’,1cycle),(‘-’,1cycle)};
PE2={(‘*’,3cycle)};
PE3={(‘%’,30cycle)};

- + + 3
+ + 3

Framework

- + *
ACP0 ACP1

Addr. Calc. Ptn. 0Address Calculation DFG

* %
- +

*

+

%

3

+ %

Addr. Calc. Ptn. 1

% *

+
% *

+
* %

ACP2 Addr. Calc. Ptn. 2

+
+

+
+ +

ACP3
Addr. Calc. Ptn. 3

92009/1/21 How to explore the best AGU effectively???

Variety of Reconfigurable AGU ModelVariety of Reconfigurable AGU Model
• Number of PEs

PE0 PE0 PE1 PE0 PE1 PE2

• Instruction assignment for each PE

nPE=1 nPE=2 nPE=3

• Instruction assignment for each PE
– A lot of instructions including special instructions

PE0 PE1 PE2 nPE=3

Enormous

add, sub, sft, mul, mod, add-sft, add-mod, sp0, sp1, sp2, …

Instructions
Enormous

combinations

, , , , , , , p , p , p ,

2009/1/21 10

Assignment of PE Implementation
Pattern

• NOT assign instructions directly but assign set• NOT assign instructions directly, but assign set
of instructions to each PE
– Set of instructions = PE implementation patternp p

PE0 PE1 PE2k=3
N: #assignment of PE Impl. Ptn.

PE0 PE1 PE2k=3

PE Impl. Ptn.)!1(


k
HN kn

Ptn0 Ptn1 Ptn2 Ptn3 Ptn4 Ptn5

p

n=6
)!1(!
)!1(





nk
kn

add sub sft add
sub
sft

mul
mod

sp0
sp1

)(

2009/1/21 11

Solution SpaceSolution Space
PE0k=1

maxmax)!1(k
PE0 PE1k=2 

 



max

1

max

1)!1(!
)!1(||

kk
kn nk

knHS

PE0 PE1 PE2k=3

 11)(kk

S: Solution space
#PE I l t ti P ttPE0 PE1 PE2k=3 n: #PE Implementation Pattern

max: Limitation of PE

k=max PE0 PEmax 1k max PE0 PEmax-1

2009/1/21 12

Architecture Exploration Problem

Solution Space

Area Energy

cycle cycle

Pareto Solutions
on cycle vs area

Pareto Solutions
on cycle vs energy

Architecture Exploration Problem:
For given application to find Pareto solutions

2009/1/21

For given application, to find Pareto solutions
from supposed solution space.

13

Set of Cycle vs Area Pareto solutions
gives you everything!

• Set of cycle vs energy Pareto solutions becomes a
subset of cycle vs area Pareto solutions under the given
energy model and following assumptions:energy model and following assumptions:
– Leakage energy is non-negligible
– Clock & power gating schemes are not appliedp g g pp
– Voltage and frequency remain constant

Pareto Solution
(Cycle vs Area)

Pareto Solution
(Cycle vs Energy)

Concentrate on only cycle vs area Pareto solutions,
2009/1/21 14

Concentrate on only cycle vs area Pareto solutions,
and you will get both!!!

How to obtain cycle vs area Pareto
solutions fast?

• Evaluate only promising solutions
– Performance evaluation is time

i t i hit t

Area


consuming part in architecture
exploration kernel

• Rough cycle estimation to findRough cycle estimation to find
promising solutions on cycle vs area
– Area estimation is easy !

cycle

New metric to find promising solutions
on cycle vs areao cyc e s a ea

2009/1/21 15

Optimistic Cycle (OC)
as rough cycle estimation

• I: a set of instructions
• n(inst): #instruction inst in a given application() g pp
• latency(inst): latency of instruction inst
• para(inst): #PE which can execute instruction instpara(inst): #PE which can execute instruction inst

  instlatencyinstnOC)()(



Iinst instpara

yOC
)(

)()(

Cycle estimation w/o any dependency
for each instructionfor each instruction

2009/1/21 16

Algorithm

Solution Space

Promising Solution
OC P t l ti

 Calculate OC for all solutions

g
(cycle vs area) OC vs area Pareto solutions

 Evaluate each solution (AGU Mapping)
Area Energy

Calculate energy
Pareto Solutions
on cycle vs energy

gy

Pareto Solutions
on cycle vs area cycle cycleon cycle vs area

2009/1/21 17

Algorithm

Solution Space

Promising Solution
OC P t l ti

 Calculate OC for all solutions

g
(cycle vs area) OC vs area Pareto solutions

 Evaluate each solution (AGU Mapping)
Area Energy

Calculate energy
Pareto Solutions
on cycle vs energy

gy

Pareto Solutions
on cycle vs area cycle cycleon cycle vs area

2009/1/21 18

Some solutions become
cycle vs energy Pareto solutions !

Comparison of Exploration TimeComparison of Exploration Time
On PentiumD 2.8GHz, 2GB Mem.

#Solutions applied SA
base evaluation

Exhaustive / OC

Exploration Time [sec]

Exhaustive / OC
Handmade 1909 / 38 12384 / 236
Cavity 2387 / 35 10341 / 157
Motion 1120 / 12 14790 / 136
QSDPCM 3586 / 23 46356 / 282

164 times faster !!!

Exploration time is drastically reduced
because of less mapped solutions !!!because of less mapped solutions !!!

2009/1/21 19

Why so fast ? – Exhaustive vs Systematic
Cycle vs Area Tradeoff -- QSDPCM

Time consuming useless evaluation !

Few useless
mapping !pp g

E h i S h S h b P d M h dExhaustive Search Search by Proposed Method

ONLY promising solutions are mapped!!!
2009/1/21 20

ONLY promising solutions are mapped!!!

Comparison of Pareto Curves:
QSDPCM

5 min !!!
Cycle vs Area Cycle vs Energy

5 min !!!

Pareto curves are completely overlapped !!!p y pp

2009/1/21 21

Comparison of Pareto Curves: MotionComparison of Pareto Curves: Motion

2 5 min !!!
Cycle vs Area Cycle vs Energy

2.5 min !!!

Pareto curves are completely overlapped !!!p y pp

2009/1/21 22

Conclusion and Future WorkConclusion and Future Work
C l i• Conclusion
– Systematic architecture exploration for

reconfigurable AGUreconfigurable AGU
• Feature of solution space
• Optimistic cycle estimation

– 164 times faster architecture exploration
• Future Work

– More accurate energy estimation
• Assume clock and power gating scheme

Architecture exploration from exploded solution– Architecture exploration from exploded solution
space

2009/1/21 23

