
Automatic Instrumentation of Embedded Software for High Level
Hardware/Software Co-Simulation

Aimen Bouchhima, Patrice Gerin and Frédéric Pétrot

System-Level Synthesis Group
TIMA Laboratory

46, Av Félix Viallet, 38031 Grenoble, France

january 21st 2009

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 1 / 26

Introduction

Multi-Processors System-On-Chip

The Trends

Software-centric architectures

Exploit parallelism at application task level

Benefit from software flexibility

Multiple Processors per SW node

Achieve easily usable computational power

Overriding challenges

Validation and debug

System level architecture exploration:
SW deployment, communication
implementation

Focus of this work: Software Node

Hardware: The processor subsystem

Software: The layered software stack

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 2 / 26

Introduction

Multi-Processors System-On-Chip

The Trends

Software-centric architectures

Exploit parallelism at application task level

Benefit from software flexibility

Multiple Processors per SW node

Achieve easily usable computational power

Overriding challenges

Validation and debug

System level architecture exploration:
SW deployment, communication
implementation

Focus of this work: Software Node

Hardware: The processor subsystem

Software: The layered software stack

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 2 / 26

Introduction

Multi-Processors System-On-Chip

The Trends

Software-centric architectures

Exploit parallelism at application task level

Benefit from software flexibility

Multiple Processors per SW node

Achieve easily usable computational power

Overriding challenges

Validation and debug

System level architecture exploration:
SW deployment, communication
implementation

Focus of this work: Software Node

Hardware: The processor subsystem

Software: The layered software stack

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 2 / 26

Introduction

Multi-Processors System-On-Chip

The Trends

Software-centric architectures

Exploit parallelism at application task level

Benefit from software flexibility

Multiple Processors per SW node

Achieve easily usable computational power

Overriding challenges

Validation and debug

System level architecture exploration:
SW deployment, communication
implementation

Focus of this work: Software Node

Hardware: The processor subsystem

Software: The layered software stack

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 2 / 26

Introduction

Multi-Processors System-On-Chip

The Trends

Software-centric architectures

Exploit parallelism at application task level

Benefit from software flexibility

Multiple Processors per SW node

Achieve easily usable computational power

Overriding challenges

Validation and debug

System level architecture exploration:
SW deployment, communication
implementation

Focus of this work: Software Node

Hardware: The processor subsystem

Software: The layered software stack

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 2 / 26

Introduction

Multi-Processors System-On-Chip

The Trends

Software-centric architectures

Exploit parallelism at application task level

Benefit from software flexibility

Multiple Processors per SW node

Achieve easily usable computational power

Overriding challenges

Validation and debug

System level architecture exploration:
SW deployment, communication
implementation

Focus of this work: Software Node

Hardware: The processor subsystem

Software: The layered software stack

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 2 / 26

Introduction

Multi-Processors System-On-Chip

The Trends

Software-centric architectures

Exploit parallelism at application task level

Benefit from software flexibility

Multiple Processors per SW node

Achieve easily usable computational power

Overriding challenges

Validation and debug

System level architecture exploration:
SW deployment, communication
implementation

Focus of this work: Software Node

Hardware: The processor subsystem

Software: The layered software stack

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 2 / 26

Introduction

MPSOC Abstraction levels

Classical approaches

Cycle Accurate co-simulation environment

Cross compiled embedded software

Interpreted and executed by ISSs

Accurate but slow

TLM based co-simulation environment

Abstraction of the hardware in TLM

Software still interpreted by ISSs

Native HW/SW co-simulation approaches

Software is executed:
1 By the host machine:

i.e. the processor running the simulation

2 On a simulation model of the hardware
dependant part

Considerable speedup

Functional validation of the whole system

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 3 / 26

Introduction

MPSOC Abstraction levels

Classical approaches

Cycle Accurate co-simulation environment

Cross compiled embedded software

Interpreted and executed by ISSs

Accurate but slow

TLM based co-simulation environment

Abstraction of the hardware in TLM

Software still interpreted by ISSs

Native HW/SW co-simulation approaches

Software is executed:
1 By the host machine:

i.e. the processor running the simulation

2 On a simulation model of the hardware
dependant part

Considerable speedup

Functional validation of the whole system

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 3 / 26

Introduction

MPSOC Abstraction levels

Classical approaches

Cycle Accurate co-simulation environment

Cross compiled embedded software

Interpreted and executed by ISSs

Accurate but slow

TLM based co-simulation environment

Abstraction of the hardware in TLM

Software still interpreted by ISSs

Native HW/SW co-simulation approaches

Software is executed:
1 By the host machine:

i.e. the processor running the simulation
2 On a simulation model of the hardware

dependant part

Considerable speedup

Functional validation of the whole system

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 3 / 26

Introduction

MPSOC Abstraction levels

Classical approaches

Cycle Accurate co-simulation environment

Cross compiled embedded software

Interpreted and executed by ISSs

Accurate but slow

TLM based co-simulation environment

Abstraction of the hardware in TLM

Software still interpreted by ISSs

Native HW/SW co-simulation approaches

Software is executed:
1 By the host machine:

i.e. the processor running the simulation
2 On a simulation model of the hardware

dependant part

Considerable speedup

Functional validation of the whole system

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 3 / 26

Introduction

Problem definition

Few or no timing information

Software executes atomically in zero time

Allows only functional validation

Annotations must be introduced in software code to enable time modeling

Performance of software depends on two orthogonal factors

The software itself depends on
Sequence and type of executed instructions
The executed control flow graph

The underlying hardware depends on
Caches, access latencies,
Other processors, ...

In this work we focus on the software source of dependency.

The hardware aspects have been addressed in previous works [1,2]

[1] P. Gerin et al., “Flexible and executable HW/SW interface modeling for MPSOC design using SystemC”, ASPDAC’07
[2] P. Gerin et al., “Efficient Implementation of Native Software Simulation for MPSoC”, DATE’08

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 4 / 26

Introduction

Objectives & Contributions

Objectives: Bring native execution closer to target execution

Provide information of the executed target instructions in native execution

That reflects closely:
The execution flow on the target processor
The performance of the instruction execution on the target processor

Contributions: A compiler based annotation technique

Specific to native simulation approaches

Fully automated and accurate

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 5 / 26

Basic Concepts

Outline

1 Introduction

2 Basic Concepts

3 Proposed Approach

4 Experimentations

5 Conclusions and Perspectives

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 6 / 26

Basic Concepts

Outline

1 Introduction

2 Basic Concepts

3 Proposed Approach

4 Experimentations

5 Conclusions and Perspectives

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 7 / 26

Basic Concepts

Basic Concepts And Challenges

Execution time approach

Follow the execution control flow
of the target program

Annotate at basic block level

Basic concepts

1 A software source code

2 The target object CFG (ARM)

3 The host object CFG (x86)
Not relevant for estimation,
x86 6= ARM

Annotation function call inserted
in each basic blocks
Function argument identifies a
corresponding basic block in the
target CFG

4 Assumes a one-to-one mapping
between the two CFGs:
generally not the case

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 8 / 26

Basic Concepts

Basic Concepts And Challenges

Execution time approach

Follow the execution control flow
of the target program

Annotate at basic block level

Basic concepts

1 A software source code

2 The target object CFG (ARM)

3 The host object CFG (x86)
Not relevant for estimation,
x86 6= ARM

Annotation function call inserted
in each basic blocks
Function argument identifies a
corresponding basic block in the
target CFG

4 Assumes a one-to-one mapping
between the two CFGs:
generally not the case

x = (y!=0) ? 23 : 1234567; 1

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 8 / 26

Basic Concepts

Basic Concepts And Challenges

Execution time approach

Follow the execution control flow
of the target program

Annotate at basic block level

Basic concepts

1 A software source code

2 The target object CFG (ARM)

3 The host object CFG (x86)
Not relevant for estimation,
x86 6= ARM

Annotation function call inserted
in each basic blocks
Function argument identifies a
corresponding basic block in the
target CFG

4 Assumes a one-to-one mapping
between the two CFGs:
generally not the case

x = (y!=0) ? 23 : 1234567; 1

2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

ARM

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 8 / 26

Basic Concepts

Basic Concepts And Challenges

Execution time approach

Follow the execution control flow
of the target program

Annotate at basic block level

Basic concepts

1 A software source code

2 The target object CFG (ARM)

3 The host object CFG (x86)
Not relevant for estimation,
x86 6= ARM

Annotation function call inserted
in each basic blocks
Function argument identifies a
corresponding basic block in the
target CFG

4 Assumes a one-to-one mapping
between the two CFGs:
generally not the case

x = (y!=0) ? 23 : 1234567; 1

2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

ARM

3

movl $2, (%esp)
call annotate
movl $23, x
jmp .L4

movl $3, (%esp)
call annotate
movl $1234567, x

movl $1, (%esp)
call annotate
testl %eax, %eax
je .L2

x86

movl $23, x
jmp .L4

movl $1234567, x

testl %eax, %eax
je .L2

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 8 / 26

Basic Concepts

Basic Concepts And Challenges

Execution time approach

Follow the execution control flow
of the target program

Annotate at basic block level

Basic concepts

1 A software source code

2 The target object CFG (ARM)

3 The host object CFG (x86)
Not relevant for estimation,
x86 6= ARM

Annotation function call inserted
in each basic blocks
Function argument identifies a
corresponding basic block in the
target CFG

4 Assumes a one-to-one mapping
between the two CFGs:
generally not the case

x = (y!=0) ? 23 : 1234567; 1

movl $23, x
jmp .L4

movl $1234567, x

testl %eax, %eax
je .L2

2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

ARM

3

movl $2, (%esp)
call annotate
movl $23, x
jmp .L4

movl $3, (%esp)
call annotate
movl $1234567, x

movl $1, (%esp)
call annotate
testl %eax, %eax
je .L2

x86

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 8 / 26

Basic Concepts

Basic Concepts And Challenges

Execution time approach

Follow the execution control flow
of the target program

Annotate at basic block level

Basic concepts

1 A software source code

2 The target object CFG (ARM)

3 The host object CFG (x86)
Not relevant for estimation,
x86 6= ARM

Annotation function call inserted
in each basic blocks
Function argument identifies a
corresponding basic block in the
target CFG

4 Assumes a one-to-one mapping
between the two CFGs:
generally not the case

x = (y!=0) ? 23 : 1234567; 1

movl $23, x
jmp .L4

movl $1234567, x

testl %eax, %eax
je .L2

2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

ARM

3

movl $2, (%esp)
call annotate
movl $23, x
jmp .L4

movl $3, (%esp)
call annotate
movl $1234567, x

movl $1, (%esp)
call annotate
testl %eax, %eax
je .L2

x86

mov r2, #1228800
add r2, r2, #5760
cmp r3, #0
addeq r2, r2, #7
movne r2, #23
str r2, [sp, #4]

4
ARM

(Optimized)

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 8 / 26

Proposed Approach

Outline

1 Introduction

2 Basic Concepts

3 Proposed Approach

4 Experimentations

5 Conclusions and Perspectives

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 9 / 26

Proposed Approach

A compiler based cross annotation

Main idea: Use the compiler
intermediate representation IR

1 Host independent (before the host
processor back-end)

2 Independent from the high level
language (C,C++,etc)

3 The IR already contains the CFG
related informations

Cross IR concept

Extend the IR troughout the
back-end

Keep track of processor specific
CFG transformations

source
(C/C++, ...)

compiler
front-end

IR
(Intermediate

Representation)

target
object

native
object

target
back-end

native
back-end

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 10 / 26

Proposed Approach

A compiler based cross annotation

Main idea: Use the compiler
intermediate representation IR

1 Host independent (before the host
processor back-end)

2 Independent from the high level
language (C,C++,etc)

3 The IR already contains the CFG
related informations

Cross IR concept

Extend the IR troughout the
back-end

Keep track of processor specific
CFG transformations

source
(C/C++, ...)

compiler
front-end

IR
(Intermediate

Representation)

target
object

native
object

target
back-end

native
back-end

cross
IR

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 10 / 26

Proposed Approach

A compiler based cross annotation

Main idea: Use the compiler
intermediate representation IR

1 Host independent (before the host
processor back-end)

2 Independent from the high level
language (C,C++,etc)

3 The IR already contains the CFG
related informations

Cross IR concept

Extend the IR troughout the
back-end

Keep track of processor specific
CFG transformations

source
(C/C++, ...)

compiler
front-end

IR
(Intermediate

Representation)

target
object

native
object

target
back-end

native
back-end

cross
IR

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 10 / 26

Proposed Approach

A compiler based cross annotation

Main idea: Use the compiler
intermediate representation IR

1 Host independent (before the host
processor back-end)

2 Independent from the high level
language (C,C++,etc)

3 The IR already contains the CFG
related informations

Cross IR concept

Extend the IR troughout the
back-end

Keep track of processor specific
CFG transformations

source
(C/C++, ...)

compiler
front-end

IR
(Intermediate

Representation)

target
object

native
object

target
back-end

native
back-end

cross
IR

Isomorphic CFG

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 10 / 26

Proposed Approach

Cross IR Construction

Typical case of CFG transformation

1 A complex IR instruction e.g. Set On Condition

2 Converted in a diamond-like structure for target processor with no support
of such instructions

3 The Cross IR is modified to reflect the same diamond-like structure

COND SET

IR CFG Target CFG CROSS-IR CFG1

Native and Target CGF are isomorphic

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 11 / 26

Proposed Approach

Cross IR Construction

Typical case of CFG transformation

1 A complex IR instruction e.g. Set On Condition

2 Converted in a diamond-like structure for target processor with no support
of such instructions

3 The Cross IR is modified to reflect the same diamond-like structure

COND SET

COND

true false

IR CFG Target CFG CROSS-IR CFG1 2

Native and Target CGF are isomorphic

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 11 / 26

Proposed Approach

Cross IR Construction

Typical case of CFG transformation

1 A complex IR instruction e.g. Set On Condition

2 Converted in a diamond-like structure for target processor with no support
of such instructions

3 The Cross IR is modified to reflect the same diamond-like structure

COND SET

COND

true false

COND

true false

IR CFG Target CFG CROSS-IR CFG1 2 3

Native and Target CGF are isomorphic

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 11 / 26

Proposed Approach

Cross IR Annotation

For each cross-IR basic blocks:

1 Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

2 Store informations (memory, file,...) and identify the basic block

3 Annotation call insertion with basic block identifier as only one argument

movl $23, x
jmp .L4

movl $1234567, x

testl %eax, %eax
je .L2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

Target CFG Native CFG

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 12 / 26

Proposed Approach

Cross IR Annotation

For each cross-IR basic blocks:

1 Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

2 Store informations (memory, file,...) and identify the basic block

3 Annotation call insertion with basic block identifier as only one argument

movl $23, x
jmp .L4

movl $1234567, x

testl %eax, %eax
je .L2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

Target CFG Native CFG

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 12 / 26

Proposed Approach

Cross IR Annotation

For each cross-IR basic blocks:

1 Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

2 Store informations (memory, file,...) and identify the basic block

3 Annotation call insertion with basic block identifier as only one argument

movl $23, x
jmp .L4

movl $1234567, x

testl %eax, %eax
je .L2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

Analyze1

3

- 2 instructions
- 3 cycles
- 5.8 µJoule
- ...

BB_ID 1

Target CFG Native CFG

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 12 / 26

Proposed Approach

Cross IR Annotation

For each cross-IR basic blocks:

1 Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

2 Store informations (memory, file,...) and identify the basic block

3 Annotation call insertion with basic block identifier as only one argument

movl $23, x
jmp .L4

movl $1234567, x

testl %eax, %eax
je .L2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

Analyze1

Store2 3

- 2 instructions
- 3 cycles
- 5.8 µJoule
- ...

BB_ID 1

Target CFG Native CFG

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 12 / 26

Proposed Approach

Cross IR Annotation

For each cross-IR basic blocks:

1 Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

2 Store informations (memory, file,...) and identify the basic block

3 Annotation call insertion with basic block identifier as only one argument

movl $23, x
jmp .L4

movl $1234567, x

movl $1, (%esp)
call annotate
testl %eax, %eax
je .L2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

Analyze1

Store2 Annotate3

- 2 instructions
- 3 cycles
- 5.8 µJoule
- ...

BB_ID 1

Target CFG Native CFG

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 12 / 26

Proposed Approach

Cross IR Annotation

For each cross-IR basic blocks:

1 Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

2 Store informations (memory, file,...) and identify the basic block

3 Annotation call insertion with basic block identifier as only one argument

movl $2, (%esp)
call annotate
movl $23, x
jmp .L4

movl $3, (%esp)
call annotate
movl $1234567, x

movl $1, (%esp)
call annotate
testl %eax, %eax
je .L2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

Analyze1

Store2 Annotate3

- 2 instructions
- 3 cycles
- 5.8 µJoule
- ...

BB_ID 1

Target CFG Native CFG

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 12 / 26

Proposed Approach

Implementation In LLVM

The Low Level Virtual Machine is

An open source compiler
infrastructure

An intermediate representation

Architecture organization

middle-end: transformation and
optimization

front-end: a port of GCC to the
LLVM ISA

back-end: processor specific
Machine-LLVM representation

LLVM
pass 1

pass N

middle-end

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 13 / 26

Proposed Approach

Implementation In LLVM

The Low Level Virtual Machine is

An open source compiler
infrastructure

An intermediate representation

Architecture organization

middle-end: transformation and
optimization

front-end: a port of GCC to the
LLVM ISA

back-end: processor specific
Machine-LLVM representation

source
(C/C++, ...)

llvm-gcc

LLVM
pass 1

pass N

front-end

middle-end

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 13 / 26

Proposed Approach

Implementation In LLVM

The Low Level Virtual Machine is

An open source compiler
infrastructure

An intermediate representation

Architecture organization

middle-end: transformation and
optimization

front-end: a port of GCC to the
LLVM ISA

back-end: processor specific
Machine-LLVM representation

source
(C/C++, ...)

llvm-gcc

LLVM

selection

selection
DAG

formation

pass 1

pass N

pass K

Machine
LLVM

object
emitter

asm or
object

front-end

middle-end

back-end

pass 1

pass M

pass 1

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 13 / 26

Proposed Approach

LLVM back-end extension

LLVM CFG maintained during back-end

Transformations in the target CFG
are reflected to the LLVM CFG
until the last pass.

Annotation pass

Analysis and annotation take place
at the end of the back-end

Output

The annotated bytecode can be
recompiled using the host machine
back-end to obtain the native
annotated code

source
(C/C++, ...)

llvm-gcc

LLVM

selection

selection
DAG

formation

pass 1

pass N

pass K

Machine
LLVM

object
emitter

asm or
object

front-end

middle-end

back-end

pass 1

pass M

pass 1

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 14 / 26

Proposed Approach

LLVM back-end extension

LLVM CFG maintained during back-end

Transformations in the target CFG
are reflected to the LLVM CFG
until the last pass.

Annotation pass

Analysis and annotation take place
at the end of the back-end

Output

The annotated bytecode can be
recompiled using the host machine
back-end to obtain the native
annotated code

source
(C/C++, ...)

llvm-gcc

LLVM

selection

selection
DAG

formation

pass 1

pass N

Machine
LLVM

object
emitter

asm or
object

cross
LLVM

front-end

middle-end

back-end

pass 1

pass M

pass 1

pass K

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 14 / 26

Proposed Approach

LLVM back-end extension

LLVM CFG maintained during back-end

Transformations in the target CFG
are reflected to the LLVM CFG
until the last pass.

Annotation pass

Analysis and annotation take place
at the end of the back-end

Output

The annotated bytecode can be
recompiled using the host machine
back-end to obtain the native
annotated code

source
(C/C++, ...)

llvm-gcc

LLVM

selection

selection
DAG

formation

pass 1

pass N

Machine
LLVM

object
emitter

asm or
object

cross
LLVM

front-end

middle-end

back-end

pass 1

pass M

pass 1

pass KAnalysis &
Annotation

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 14 / 26

Proposed Approach

LLVM back-end extension

LLVM CFG maintained during back-end

Transformations in the target CFG
are reflected to the LLVM CFG
until the last pass.

Annotation pass

Analysis and annotation take place
at the end of the back-end

Output

The annotated bytecode can be
recompiled using the host machine
back-end to obtain the native
annotated code

source
(C/C++, ...)

llvm-gcc

LLVM

selection

selection
DAG

formation

pass 1

pass N

Machine
LLVM

object
emitter

asm or
object

cross
LLVM

bytecode
emitter

annotated
bytecode

front-end

middle-end

back-end

pass 1

pass M

pass 1

pass KAnalysis &
Annotation

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 14 / 26

Proposed Approach

Approach Limitations

Limitations

Processor specific implementation in assembly language
Hand optimized performance critical algorithms
Compilers back-end builtin functions

Binary object format libraries not handled by this approach
Code provided by thrird-party
Non Open-Source code

Possible solution

Decompilation approaches
Convert target assembly into compiler IR
Annotate the obtained IR according to the target code
Generate host machine code

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 15 / 26

Experimentations

Outline

1 Introduction

2 Basic Concepts

3 Proposed Approach

4 Experimentations

5 Conclusions and Perspectives

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 16 / 26

Experimentations

Experimentations Context

Software part

Application: Multithread version of
Motion-JPEG

Operating System: DNA OS, with SMP
support and POSIX pthread library

C library: Newlib

Hardware part

Symmetric Multi-Processor architecture

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Hardware Dependent
Simulation Model :

- HAL layer
- Processor Subsystem

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

app.so

llv
m

-g
c
c

extern void annotate(uintptr_t id);

void annotate(uintptr_t id)
{
 buffer.push((basicblock_t*)id)
 if(buffer.full()
 synchronize();
}

basic block data base

BB info
 - Nb instructions
 - Nb load
 - Nb store
 - Nb cycles

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 17 / 26

Experimentations

Experimentations Context

Software part

Application: Multithread version of
Motion-JPEG

Operating System: DNA OS, with SMP
support and POSIX pthread library

C library: Newlib

Hardware part

Symmetric Multi-Processor architecture

DNA
OS

POSIX
pthread

Newlib

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Hardware Dependent
Simulation Model :

- HAL layer
- Processor Subsystem

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

app.so

llv
m

-g
c
c

extern void annotate(uintptr_t id);

void annotate(uintptr_t id)
{
 buffer.push((basicblock_t*)id)
 if(buffer.full()
 synchronize();
}

basic block data base

BB info
 - Nb instructions
 - Nb load
 - Nb store
 - Nb cycles

Motion-JPEG

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 17 / 26

Experimentations

Experimentations Context

Software part

Application: Multithread version of
Motion-JPEG

Operating System: DNA OS, with SMP
support and POSIX pthread library

C library: Newlib

Hardware part

Symmetric Multi-Processor architecture

Newlib

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Hardware Dependent
Simulation Model :

- HAL layer
- Processor Subsystem

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

app.so

llv
m

-g
c
c

extern void annotate(uintptr_t id);

void annotate(uintptr_t id)
{
 buffer.push((basicblock_t*)id)
 if(buffer.full()
 synchronize();
}

basic block data base

BB info
 - Nb instructions
 - Nb load
 - Nb store
 - Nb cycles

Motion-JPEG

DNA
OS

POSIX
pthread

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 17 / 26

Experimentations

Experimentations Context

Software part

Application: Multithread version of
Motion-JPEG

Operating System: DNA OS, with SMP
support and POSIX pthread library

C library: Newlib

Hardware part

Symmetric Multi-Processor architecture

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Hardware Dependent
Simulation Model :

- HAL layer
- Processor Subsystem

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

app.so

llv
m

-g
c
c

extern void annotate(uintptr_t id);

void annotate(uintptr_t id)
{
 buffer.push((basicblock_t*)id)
 if(buffer.full()
 synchronize();
}

basic block data base

BB info
 - Nb instructions
 - Nb load
 - Nb store
 - Nb cycles

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 17 / 26

Experimentations

Experimentations Context

Software part

Application: Multithread version of
Motion-JPEG

Operating System: DNA OS, with SMP
support and POSIX pthread library

C library: Newlib

Hardware part

Symmetric Multi-Processor architecture

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Hardware Dependent
Simulation Model :

- HAL layer
- Processor Subsystem

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

app.so

llv
m

-g
c
c

extern void annotate(uintptr_t id);

void annotate(uintptr_t id)
{
 buffer.push((basicblock_t*)id)
 if(buffer.full()
 synchronize();
}

basic block data base

BB info
 - Nb instructions
 - Nb load
 - Nb store
 - Nb cycles

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 17 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

1 Hardware independent part of the software is annotated using llvm-gcc

For arm: llvm-gcc -g -Zmllvm”-annotate=arm” -c main.c -o main.o
For sparc: llvm-gcc -g -Zmllvm”-annotate=sparc” -c main.c -o main.o

2 Build a dynamic library of the software parts containing:
Undefined annotate function calls, automaticaly inserted during compilation
Basic blocks information directly stored in the library binary image
ID argument corresponds to a basic block information structure address

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 18 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

1 Hardware independent part of the software is annotated using llvm-gcc

For arm: llvm-gcc -g -Zmllvm”-annotate=arm” -c main.c -o main.o
For sparc: llvm-gcc -g -Zmllvm”-annotate=sparc” -c main.c -o main.o

2 Build a dynamic library of the software parts containing:
Undefined annotate function calls, automaticaly inserted during compilation
Basic blocks information directly stored in the library binary image
ID argument corresponds to a basic block information structure address

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

llvm-gcc -annotate=arm -g -c main.c -o main.o

llv
m

-g
c
c

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 18 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

1 Hardware independent part of the software is annotated using llvm-gcc

For arm: llvm-gcc -g -Zmllvm”-annotate=arm” -c main.c -o main.o
For sparc: llvm-gcc -g -Zmllvm”-annotate=sparc” -c main.c -o main.o

2 Build a dynamic library of the software parts containing:
Undefined annotate function calls, automaticaly inserted during compilation
Basic blocks information directly stored in the library binary image
ID argument corresponds to a basic block information structure address

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

app.so

llv
m

-g
c
c

extern void annotate(uintptr_t id);

basic block data base

BB info
 - Nb instructions
 - Nb load
 - Nb store
 - Nb cycles

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 18 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

1 Processor Sub-System and HAL layer are modeled using SystemC

Allow validation of the OS and middle ware implementation
Reflect low level details of a real architecture

2 The annotate function is implemented in the SystemC model
Called at each basic block execution
ID are buffered and computed only when needed to speed-up the simulation
Basic block information is computed to consume simulation time

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

app.so

llv
m

-g
c
c

extern void annotate(uintptr_t id);

basic block data base

BB info
 - Nb instructions
 - Nb load
 - Nb store
 - Nb cycles

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 19 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

1 Processor Sub-System and HAL layer are modeled using SystemC

Allow validation of the OS and middle ware implementation
Reflect low level details of a real architecture

2 The annotate function is implemented in the SystemC model
Called at each basic block execution
ID are buffered and computed only when needed to speed-up the simulation
Basic block information is computed to consume simulation time

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

app.so

llv
m

-g
c
c

extern void annotate(uintptr_t id);

basic block data base

BB info
 - Nb instructions
 - Nb load
 - Nb store
 - Nb cycles

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

Hardware Dependent
Simulation Model :

- HAL layer
- Processor Subsystem

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 19 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

1 Processor Sub-System and HAL layer are modeled using SystemC

Allow validation of the OS and middle ware implementation
Reflect low level details of a real architecture

2 The annotate function is implemented in the SystemC model
Called at each basic block execution
ID are buffered and computed only when needed to speed-up the simulation
Basic block information is computed to consume simulation time

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

llvm-gcc -annotate=arm -g -c main.c -o main.o

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

HDS API

app.so

llv
m

-g
c
c

extern void annotate(uintptr_t id);

basic block data base

BB info
 - Nb instructions
 - Nb load
 - Nb store
 - Nb cycles

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

void annotate(uintptr_t id)
{
 buffer.push((basicblock_t*)id);
 if(buffer.full())
 synchronize();
}

void synchronize() {
 ...
 for(i=0;i<BUF_SIZE;i++)
 time += buffer[i].nb_cycles;
 wait(time);
}

High Level Application

Operating
System

Com
libs

C/Math
libs

HDS API

Hardware Abstraction Layer

Intra-Communication

CPU0
$I $D

CPU1
$I $D

CPU2
$I $D

MEM DMA

HW

ITC

Motion-JPEG

DNA
OS

POSIX
pthread

Newlib

Hardware Dependent
Simulation Model :

- HAL layer
- Processor Subsystem

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 19 / 26

Experimentations

Experimentation Results

Objective: Assess only the annotation accuracy

Ability to reflect the CFG of the target software execution

Should not take into account the underlying HW model
⇒ Use the number of instruction metric

Estimate the number of executed instructions

On a relevant function:
Need a function with a large dynamicity
Variable Length Decoder (VLD) function of the jpeg decoder

Does not provide any performance estimation

Number of instruction 6= execution time

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 20 / 26

Experimentations

Experimentation Results

Number of executed instruction for each VLD function call

Cycle accurate bit accurate (caba) provide the reference count

Less than 3% of error due to not annotated code
The SystemC model of the HAL software layer

The error is negative or zero when the code is fully annotated

N
b

 I
n

st
ru

ct
io

n
s

VLD function calls

e
rr

o
r(

%
)

VLD function calls

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 21 / 26

Experimentations

Experimentation Results

Simulation Speed-up compared to CABA execution model

Very dependent on:
Execution time computation
trace dump, software profiling, ...
The underlying HW model

From x100 with timing estimation and execution time software profiling

To x1000 speed-up factor with only execution time estimation.

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 22 / 26

Conclusions and Perspectives

Outline

1 Introduction

2 Basic Concepts

3 Proposed Approach

4 Experimentations

5 Conclusions and Perspectives

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 23 / 26

Conclusions and Perspectives

Conclusion

A compiled-based approach

Automatic annotation of embedded software

Accurate in term of program control flow execution

The annotation process is clearly separated from the performance
estimation

Performance estimation depend on
Informations associated with the basic blocks
The underlying hardware architecture

Main benefits

Adapted to high level hardware/software cosimulation approaches

Not restricted to a particular compiler

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 24 / 26

Conclusions and Perspectives

Perspectives & Futur Work

Improving analysis of basic blocks

Increase accuracy
Pipeline effect
Instructions dependencies
e.g. WCET at a BB granularity

Different information
Power consumption

Tools are needed

To interprete simulation results

Annotation technique used to
profile target software executed on
the host machine
”Cross profiling”

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 25 / 26

Conclusions and Perspectives

Perspectives & Futur Work

Improving analysis of basic blocks

Increase accuracy
Pipeline effect
Instructions dependencies
e.g. WCET at a BB granularity

Different information
Power consumption

Tools are needed

To interprete simulation results

Annotation technique used to
profile target software executed on
the host machine
”Cross profiling”

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 25 / 26

Conclusions and Perspectives

Perspectives & Futur Work

Improving analysis of basic blocks

Increase accuracy
Pipeline effect
Instructions dependencies
e.g. WCET at a BB granularity

Different information
Power consumption

Tools are needed

To interprete simulation results

Annotation technique used to
profile target software executed on
the host machine
”Cross profiling”

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 25 / 26

Questions

Patrice.Gerin@imag.fr

System-Level Synthesis Group
TIMA Laboratory

46, Av Félix Viallet, 38031 Grenoble, France

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 26 / 26

	Introduction
	Basic Concepts
	Proposed Approach
	Experimentations
	Conclusions and Perspectives
	

