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Introduction

Problem definition

Few or no timing information

Software executes atomically in zero time

Allows only functional validation

Annotations must be introduced in software code to enable time modeling

Performance of software depends on two orthogonal factors

The software itself depends on
Sequence and type of executed instructions
The executed control flow graph

The underlying hardware depends on
Caches, access latencies,
Other processors, ...

In this work we focus on the software source of dependency.

The hardware aspects have been addressed in previous works [1,2]

[1] P. Gerin et al., “Flexible and executable HW/SW interface modeling for MPSOC design using SystemC”, ASPDAC’07
[2] P. Gerin et al., “Efficient Implementation of Native Software Simulation for MPSoC”, DATE’08
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Introduction

Objectives & Contributions

Objectives: Bring native execution closer to target execution

Provide information of the executed target instructions in native execution

That reflects closely:
The execution flow on the target processor
The performance of the instruction execution on the target processor

Contributions: A compiler based annotation technique

Specific to native simulation approaches

Fully automated and accurate
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Basic Concepts

Basic Concepts And Challenges

Execution time approach

Follow the execution control flow
of the target program

Annotate at basic block level

Basic concepts

1 A software source code

2 The target object CFG (ARM)

3 The host object CFG (x86)
Not relevant for estimation,
x86 6= ARM

Annotation function call inserted
in each basic blocks
Function argument identifies a
corresponding basic block in the
target CFG

4 Assumes a one-to-one mapping
between the two CFGs:
generally not the case

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 8 / 26



Basic Concepts

Basic Concepts And Challenges

Execution time approach

Follow the execution control flow
of the target program

Annotate at basic block level

Basic concepts

1 A software source code

2 The target object CFG (ARM)

3 The host object CFG (x86)
Not relevant for estimation,
x86 6= ARM

Annotation function call inserted
in each basic blocks
Function argument identifies a
corresponding basic block in the
target CFG

4 Assumes a one-to-one mapping
between the two CFGs:
generally not the case

x = (y!=0) ? 23 : 1234567; 1

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 8 / 26



Basic Concepts

Basic Concepts And Challenges

Execution time approach

Follow the execution control flow
of the target program

Annotate at basic block level

Basic concepts

1 A software source code

2 The target object CFG (ARM)

3 The host object CFG (x86)
Not relevant for estimation,
x86 6= ARM

Annotation function call inserted
in each basic blocks
Function argument identifies a
corresponding basic block in the
target CFG

4 Assumes a one-to-one mapping
between the two CFGs:
generally not the case

x = (y!=0) ? 23 : 1234567; 1

2

cmp r3, #0
beq .L2
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movl  $2, (%esp)
call  annotate
movl  $23, x
jmp   .L4

movl  $3, (%esp)
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Proposed Approach

A compiler based cross annotation

Main idea: Use the compiler
intermediate representation IR

1 Host independent (before the host
processor back-end)

2 Independent from the high level
language (C,C++,etc)

3 The IR already contains the CFG
related informations

Cross IR concept

Extend the IR troughout the
back-end

Keep track of processor specific
CFG transformations

source
(C/C++, ...)

compiler
front-end

IR
(Intermediate

Representation)

target
object

native
object

target
back-end

native
back-end
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Proposed Approach

Cross IR Construction

Typical case of CFG transformation

1 A complex IR instruction e.g. Set On Condition

2 Converted in a diamond-like structure for target processor with no support
of such instructions

3 The Cross IR is modified to reflect the same diamond-like structure

COND SET

IR CFG Target CFG CROSS-IR CFG1

Native and Target CGF are isomorphic
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Proposed Approach

Cross IR Annotation

For each cross-IR basic blocks:

1 Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

2 Store informations (memory, file,...) and identify the basic block

3 Annotation call insertion with basic block identifier as only one argument

movl  $23, x
jmp   .L4

movl  $1234567, x

testl %eax, %eax
je    .L2

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .L4

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

Target CFG Native CFG
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Proposed Approach

Implementation In LLVM

The Low Level Virtual Machine is

An open source compiler
infrastructure

An intermediate representation

Architecture organization

middle-end: transformation and
optimization

front-end: a port of GCC to the
LLVM ISA

back-end: processor specific
Machine-LLVM representation

LLVM
pass 1

pass N

middle-end
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Proposed Approach

LLVM back-end extension

LLVM CFG maintained during back-end

Transformations in the target CFG
are reflected to the LLVM CFG
until the last pass.

Annotation pass

Analysis and annotation take place
at the end of the back-end

Output

The annotated bytecode can be
recompiled using the host machine
back-end to obtain the native
annotated code
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Proposed Approach

Approach Limitations

Limitations

Processor specific implementation in assembly language
Hand optimized performance critical algorithms
Compilers back-end builtin functions

Binary object format libraries not handled by this approach
Code provided by thrird-party
Non Open-Source code

Possible solution

Decompilation approaches
Convert target assembly into compiler IR
Annotate the obtained IR according to the target code
Generate host machine code
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Experimentations

Experimentations Context

Software part

Application: Multithread version of
Motion-JPEG

Operating System: DNA OS, with SMP
support and POSIX pthread library

C library: Newlib

Hardware part

Symmetric Multi-Processor architecture
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extern void annotate(uintptr_t id);

void annotate(uintptr_t id)
{
    buffer.push((basicblock_t*)id)
    if(buffer.full()
       synchronize();
}

basic block data base

BB info
  - Nb instructions
  - Nb load
  - Nb store
  - Nb cycles
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Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

1 Hardware independent part of the software is annotated using llvm-gcc

For arm: llvm-gcc -g -Zmllvm”-annotate=arm” -c main.c -o main.o
For sparc: llvm-gcc -g -Zmllvm”-annotate=sparc” -c main.c -o main.o

2 Build a dynamic library of the software parts containing:
Undefined annotate function calls, automaticaly inserted during compilation
Basic blocks information directly stored in the library binary image
ID argument corresponds to a basic block information structure address
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Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

1 Processor Sub-System and HAL layer are modeled using SystemC

Allow validation of the OS and middle ware implementation
Reflect low level details of a real architecture

2 The annotate function is implemented in the SystemC model
Called at each basic block execution
ID are buffered and computed only when needed to speed-up the simulation
Basic block information is computed to consume simulation time
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void annotate(uintptr_t id)
{
    buffer.push((basicblock_t*)id);
    if(buffer.full())
       synchronize();
}

void synchronize() {
  ...
  for(i=0;i<BUF_SIZE;i++)
    time += buffer[i].nb_cycles;
  wait(time);
}
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Experimentations

Experimentation Results

Objective: Assess only the annotation accuracy

Ability to reflect the CFG of the target software execution

Should not take into account the underlying HW model
⇒ Use the number of instruction metric

Estimate the number of executed instructions

On a relevant function:
Need a function with a large dynamicity
Variable Length Decoder (VLD) function of the jpeg decoder

Does not provide any performance estimation

Number of instruction 6= execution time
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Experimentations

Experimentation Results

Number of executed instruction for each VLD function call

Cycle accurate bit accurate (caba) provide the reference count

Less than 3% of error due to not annotated code
The SystemC model of the HAL software layer

The error is negative or zero when the code is fully annotated
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Experimentations

Experimentation Results

Simulation Speed-up compared to CABA execution model

Very dependent on:
Execution time computation
trace dump, software profiling, ...
The underlying HW model

From x100 with timing estimation and execution time software profiling

To x1000 speed-up factor with only execution time estimation.
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Conclusions and Perspectives

Conclusion

A compiled-based approach

Automatic annotation of embedded software

Accurate in term of program control flow execution

The annotation process is clearly separated from the performance
estimation

Performance estimation depend on
Informations associated with the basic blocks
The underlying hardware architecture

Main benefits

Adapted to high level hardware/software cosimulation approaches

Not restricted to a particular compiler

Patrice Gerin (TIMA Laboratory) ASP-DAC’09 january 21st 2009 24 / 26



Conclusions and Perspectives

Perspectives & Futur Work

Improving analysis of basic blocks

Increase accuracy
Pipeline effect
Instructions dependencies
e.g. WCET at a BB granularity

Different information
Power consumption

Tools are needed

To interprete simulation results

Annotation technique used to
profile target software executed on
the host machine
”Cross profiling”
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Questions

Patrice.Gerin@imag.fr

System-Level Synthesis Group
TIMA Laboratory

46, Av Félix Viallet, 38031 Grenoble, France
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