Automatic Instrumentation of Embedded Software for High Level Hardware/Software Co-Simulation

Aimen Bouchhima, Patrice Gerin and Frédéric Pétrot

System-Level Synthesis Group TIMA Laboratory 46, Av Félix Viallet, 38031 Grenoble, France

january 21st 2009

The Trends

Software-centric architectures

- Exploit parallelism at application task level
- Benefit from software flexibility

Multiple Processors per SW node

The Trends

Software-centric architectures

- Exploit parallelism at application task level
- Benefit from software flexibility

Multiple Processors per SW node

The Trends

Software-centric architectures

- Exploit parallelism at application task level
- Benefit from software flexibility

Multiple Processors per SW node

The Trends

Software-centric architectures

- Exploit parallelism at application task level
- Benefit from software flexibility

Multiple Processors per SW node

The Trends

Software-centric architectures

- Exploit parallelism at application task level
- Benefit from software flexibility

Multiple Processors per SW node

• Achieve easily usable computational power

Overriding challenges

- Validation and debug
- System level architecture exploration: SW deployment, communication implementation

The Trends

Software-centric architectures

- Exploit parallelism at application task level
- Benefit from software flexibility

Multiple Processors per SW node

• Achieve easily usable computational power

Overriding challenges

- Validation and debug
- System level architecture exploration: SW deployment, communication implementation

Focus of this work: Software Node

• Hardware: The processor subsystem

The Trends

Software-centric architectures

- Exploit parallelism at application task level
- Benefit from software flexibility

Multiple Processors per SW node

• Achieve easily usable computational power

Overriding challenges

- Validation and debug
- System level architecture exploration: SW deployment, communication implementation

Focus of this work: Software Node

- Hardware: The processor subsystem
- Software: The layered software stack

Classical approaches

Cycle Accurate co-simulation environment

- Cross compiled embedded software
- Interpreted and executed by ISSs
- Accurate but slow

TLM based co-simulation environment

- Abstraction of the hardware in TLM
- Software still interpreted by ISSs

Classical approaches

Cycle Accurate co-simulation environment

- Cross compiled embedded software
- Interpreted and executed by ISSs
- Accurate but slow

TLM based co-simulation environment

- Abstraction of the hardware in TLM
- Software still interpreted by ISSs

Native HW/SW co-simulation approaches

- Software is executed:
 - By the host machine:
 - i.e. the processor running the simulation

Classical approaches

Cycle Accurate co-simulation environment

- Cross compiled embedded software
- Interpreted and executed by ISSs
- Accurate but slow

TLM based co-simulation environment

- Abstraction of the hardware in TLM
- Software still interpreted by ISSs

Native HW/SW co-simulation approaches

- Software is executed:
 - By the host machine:
 - *i.e.* the processor running the simulation
 - On a simulation model of the hardware dependant part

Classical approaches

Cycle Accurate co-simulation environment

- Cross compiled embedded software
- Interpreted and executed by ISSs
- Accurate but slow

TLM based co-simulation environment

- Abstraction of the hardware in TLM
- Software still interpreted by ISSs

Native HW/SW co-simulation approaches

- Software is executed:
 - By the host machine:
 - *i.e.* the processor running the simulation
 - On a simulation model of the hardware dependant part
- Considerable speedup
- Functional validation of the whole system

High Level Application Natively executed by the host machine Hardware Dependent Simulation Model :

- HAL layer
- Processor Subsystem

Few or no timing information

- Software executes atomically in zero time
- Allows only functional validation
- Annotations must be introduced in software code to enable time modeling

Performance of software depends on two orthogonal factors

- The software itself depends on
 - Sequence and type of executed instructions
 - The executed control flow graph
- The underlying hardware depends on
 - Caches, access latencies,
 - Other processors, ...
- In this work we focus on the software source of dependency.
- The hardware aspects have been addressed in previous works [1,2]

[2] P. Gerin et al., "Efficient Implementation of Native Software Simulation for MPSoC", DATE'08

^[1] P. Gerin et al., "Flexible and executable HW/SW interface modeling for MPSOC design using SystemC", ASPDAC'07

Objectives: Bring native execution closer to target execution

- Provide information of the executed target instructions in native execution
- That reflects closely:
 - The execution flow on the target processor
 - The performance of the instruction execution on the target processor

Contributions: A compiler based annotation technique

- Specific to native simulation approaches
- Fully automated and accurate

1 Introduction

2 Basic Concepts

Proposed Approach

Experimentations

2 Basic Concepts

Proposed Approach

Experimentations

Execution time approach

- Follow the execution control flow of the target program
- Annotate at basic block level

Basic Concepts

Basic Concepts And Challenges

Execution time approach

- Follow the execution control flow of the target program
- Annotate at basic block level

Basic concepts

A software source code

x = (y!=0) ? 23 : 1234567;

0

Execution time approach

- Follow the execution control flow of the target program
- Annotate at basic block level

Basic concepts

- A software source code
- The target object CFG (ARM)

x = (y!=0) ? 23 : 1234567;

0

Execution time approach

- Follow the execution control flow of the target program
- Annotate at basic block level

Basic concepts

- A software source code
- The target object CFG (ARM)
- The host object CFG (x86) Not relevant for estimation, $x86 \neq ARM$

x = (y!=0) ? 23 : 1234567;

Execution time approach

- Follow the execution control flow of the target program
- Annotate at basic block level

Basic concepts

- A software source code
- The target object CFG (ARM)
- The host object CFG (x86) Not relevant for estimation, $x86 \neq ARM$
 - Annotation function call inserted in each basic blocks
 - Function argument identifies a corresponding basic block in the target CFG

x = (y!=0) ? 23 : 1234567;

0

Execution time approach

- Follow the execution control flow of the target program
- Annotate at basic block level

Basic concepts

- A software source code
- The target object CFG (ARM)
- The host object CFG (x86) Not relevant for estimation, $x86 \neq ARM$
 - Annotation function call inserted in each basic blocks
 - Function argument identifies a corresponding basic block in the target CFG

 Assumes a one-to-one mapping between the two CFGs: generally not the case x = (y!=0) ? 23 : 1234567;

Outline

2 Basic Concepts

Proposed Approach

Experimentations

Main idea: Use the compiler intermediate representation IR source Host independent (before the host) (C/C++....) processor back-end) compiler Independent from the high level front-end language (C, C++, etc)The IR already contains the CFG IR related informations (Intermediate Representation) Cross IR concept target native back-end back-end Extend the IR troughout the back-end target native object object Keep track of processor specific CEG transformations

Main idea: Use the compiler intermediate representation IR

- Host independent (before the host processor back-end)
- Independent from the high level language (C,C++,etc)
- The IR already contains the CFG related informations

Cross IR concept

- Extend the IR troughout the back-end
- Keep track of processor specific CFG transformations

Main idea: Use the compiler intermediate representation IR

- Host independent (before the host processor back-end)
- Independent from the high level language (C,C++,etc)
- The IR already contains the CFG related informations

Cross IR concept

- Extend the IR troughout the back-end
- Keep track of processor specific CFG transformations

Main idea: Use the compiler intermediate representation IR

- Host independent (before the host processor back-end)
- Independent from the high level language (C,C++,etc)
- The IR already contains the CFG related informations

Cross IR concept

- Extend the IR troughout the back-end
- Keep track of processor specific CFG transformations

Typical case of CFG transformation

- A complex IR instruction e.g. Set On Condition
- Onverted in a diamond-like structure for target processor with no support of such instructions
- **③** The Cross IR is modified to reflect the same diamond-like structure

IR CFG	Target CFG	CROSS-IR CFG

Native and Target CGF are isomorphic

Typical case of CFG transformation

- A complex IR instruction e.g. Set On Condition
- Onverted in a diamond-like structure for target processor with no support of such instructions
- **③** The Cross IR is modified to reflect the same diamond-like structure

Native and Target CGF are isomorphic

Typical case of CFG transformation

- A complex IR instruction e.g. Set On Condition
- Onverted in a diamond-like structure for target processor with no support of such instructions
- **③** The Cross IR is modified to reflect the same diamond-like structure

Native and Target CGF are isomorphic

Proposed Approach

Cross IR Annotation

Cross IR Annotation

Analyze statically the corresponding target basic block i.e. number/type of instructions, estimated number of cycles

- Analyze *statically* the corresponding target basic block *i.e.* number/type of instructions, estimated number of cycles
- **②** Store informations (memory, file,...) and identify the basic block

- Analyze *statically* the corresponding target basic block *i.e.* number/type of instructions, estimated number of cycles
- Store informations (memory, file,...) and identify the basic block
- O Annotation call insertion with basic block identifier as only one argument

- Analyze *statically* the corresponding target basic block *i.e.* number/type of instructions, estimated number of cycles
- Store informations (memory, file,...) and identify the basic block
- O Annotation call insertion with basic block identifier as only one argument

Implementation In LLVM

The Low Level Virtual Machine is

- An open source compiler infrastructure
- An intermediate representation

Architecture organization

- middle-end: transformation and optimization
- front-end: a port of GCC to the LLVM ISA
- back-end: processor specific Machine-LLVM representation

Implementation In LLVM

The Low Level Virtual Machine is

- An open source compiler infrastructure
- An intermediate representation

Architecture organization

- middle-end: transformation and optimization
- front-end: a port of GCC to the LLVM ISA
- back-end: processor specific Machine-LLVM representation

Implementation In LLVM

The Low Level Virtual Machine is

- An open source compiler infrastructure
- An intermediate representation

Architecture organization

- middle-end: transformation and optimization
- front-end: a port of GCC to the LLVM ISA
- back-end: processor specific Machine-LLVM representation

LLVM CFG maintained during back-end

 Transformations in the target CFG are reflected to the LLVM CFG until the last pass.

Annotation pass

• Analysis and annotation take place at the end of the back-end

Output

LLVM CFG maintained during back-end

 Transformations in the target CFG are reflected to the LLVM CFG until the last pass.

Annotation pass

• Analysis and annotation take place at the end of the back-end

Output

LLVM CFG maintained during back-end

 Transformations in the target CFG are reflected to the LLVM CFG until the last pass.

Annotation pass

• Analysis and annotation take place at the end of the back-end

Output

LLVM CFG maintained during back-end

 Transformations in the target CFG are reflected to the LLVM CFG until the last pass.

Annotation pass

• Analysis and annotation take place at the end of the back-end

Output

Approach Limitations

Limitations

- Processor specific implementation in assembly language
 - Hand optimized performance critical algorithms
 - Compilers back-end builtin functions
- Binary object format libraries not handled by this approach
 - Code provided by thrird-party
 - Non Open-Source code

Possible solution

- Decompilation approaches
 - Convert target assembly into compiler IR
 - Annotate the obtained IR according to the target code
 - Generate host machine code

Introduction

2 Basic Concepts

3 Proposed Approach

Experimentations

- Application: Multithread version of Motion-JPEG
- Operating System: DNA OS, with SMP support and POSIX pthread library
- C library: Newlib

- Application: Multithread version of Motion-JPEG
- Operating System: DNA OS, with SMP support and POSIX pthread library
- C library: Newlib

- Application: Multithread version of Motion-JPEG
- Operating System: DNA OS, with SMP support and POSIX pthread library
- C library: Newlib

- Application: Multithread version of Motion-JPEG
- Operating System: DNA OS, with SMP support and POSIX pthread library
- C library: Newlib

Software part

- Application: Multithread version of Motion-JPEG
- Operating System: DNA OS, with SMP support and POSIX pthread library
- C library: Newlib

Hardware part

• Symmetric Multi-Processor architecture

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

1 Hardware independent part of the software is annotated using *llvm-gcc*

- For arm: Ilvm-gcc -g -Zmllvm"-annotate=arm" -c main.c -o main.o
- For sparc: Ilvm-gcc -g -Zmllvm"-annotate=sparc" -c main.c -o main.o

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

I Hardware independent part of the software is annotated using *llvm-gcc*

- For arm: Ilvm-gcc -g -Zmllvm"-annotate=arm" -c main.c -o main.o
- For sparc: Ilvm-gcc -g -Zmllvm"-annotate=sparc" -c main.c -o main.o
- Build a dynamic library of the software parts containing:
 - Undefined annotate function calls, automaticaly inserted during compilation
 - Basic blocks information directly stored in the library binary image
 - ID argument corresponds to a basic block information structure address

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

\$I \$D

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

Processor Sub-System and HAL layer are modeled using SystemC

- Allow validation of the OS and middle ware implementation
- Reflect low level details of a real architecture

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

Processor Sub-System and HAL layer are modeled using SystemC

- Allow validation of the OS and middle ware implementation
- Reflect low level details of a real architecture
- ² The *annotate* function is implemented in the SystemC model
 - Called at each basic block execution
 - ID are buffered and computed only when needed to speed-up the simulation
 - Basic block information is computed to consume simulation time

Objective: Assess only the annotation accuracy

- Ability to reflect the CFG of the target software execution
- Should not take into account the underlying HW model
 - \Rightarrow Use the number of instruction metric

Estimate the number of executed instructions

- On a relevant function:
 - · Need a function with a large dynamicity
 - Variable Length Decoder (VLD) function of the jpeg decoder

Does not provide any performance estimation

• Number of instruction \neq execution time

Experimentation Results

Number of executed instruction for each VLD function call

- Cycle accurate bit accurate (caba) provide the reference count
- Less than 3% of error due to not annotated code The SystemC model of the HAL software layer
- The error is negative or zero when the code is fully annotated

Simulation Speed-up compared to CABA execution model

• Very dependent on:

- Execution time computation trace dump, software profiling, ...
- The underlying HW model
- From x100 with timing estimation and execution time software profiling
- To x1000 speed-up factor with only execution time estimation.

Outline

1 Introduction

2 Basic Concepts

3 Proposed Approach

Experimentations

A compiled-based approach

- Automatic annotation of embedded software
- Accurate in term of program control flow execution
- The annotation process is clearly separated from the performance estimation
- Performance estimation depend on
 - Informations associated with the basic blocks
 - The underlying hardware architecture

Main benefits

- Adapted to high level hardware/software cosimulation approaches
- Not restricted to a particular compiler

Perspectives & Futur Work

Improving analysis of basic blocks

- Increase accuracy
 - Pipeline effect
 - Instructions dependencies
 - e.g. WCET at a BB granularity
- Different information
 - Power consumption

Tools are needed

- To interprete simulation results
- Annotation technique used to profile target software executed on the host machine
 - "Cross profiling"

Perspectives & Futur Work

Improving analysis of basic blocks

- Increase accuracy
 - Pipeline effect
 - Instructions dependencies
 - e.g. WCET at a BB granularity
- Different information
 - Power consumption

Tools are needed

- To interprete simulation results
- Annotation technique used to profile target software executed on the host machine "Cross profiling"

9			eachagrind.o	n.2006-11-10 - Kfachegrind 🔤 🙃
Eile	Yiew	<u>G</u> o	Settings Help	
12	0	∿ 6	🔾 🔾 % 🕂 🕹	Instructions +
			×	at multiments
iaar	rb:		(No Grouning)	rcrenderscene
201			title ereability	
Incl		Self	Called Function	animate_scene
	90.66	0.01	(0)main	63.11 %
	90.62	0.00	1libthread_sta	
	90.61	0.00	1 main	63.11 %
	90.61	0.00	1 dnaos_main 🛁	¥
	63.41	0.00	1 animate_scene	rt_renderscene
	63.11	0.00	1 rt_renderscene	1 63.11 N
	63.11	0.00	1 mrenderscene	
	61.23	0.24	1 thread_trace	63.11 %
	60.99	0.31	270 cam_perspecti	* *
	43.23	1.08	270 tuil_shader	renderscene
	41.91	0.49	553 intersect_objec	E 63 11 %
	41.02	1.25	4 400 sqir	
	40.55	40.57	4 560leee/54_sqn	61.21%
	40.34	2.12	1 697 strulinder inter	+
	23.75	0.00	1 dan ercymider_moer	thread_trace
	21.45	0.00	1 minitTexturer	
	21.44	17.06	1 InitNoise	161.23 %
	0.10	0.00	(0) #doa_stact	
	9.04	9.04	1 dna memset	00.99 %
	5.50	0.43	540 simple point I	cam nersnertive rav
	5.47	0.01	1 readmodel	
	4.95	0.09	55 GetObject	60.99 %
	4.75	0.23	144 mimage cyl tex	
	4.39	4.39		43.23 %
	3.27	0.68	970 sphere interse	full alter day
	3.16	0.29	287 gring_intersect	14.92 %
	2.44	0.11	265 VNorm	43.23 %
	2.44	0.14	165 shade_blinn	
	2.29	0.09	144 xyztocyl	26.99 % 5.50 % 4.75 %
	2.09	2.05	1 639 tri_intersect	
	1.90	0.00	561 #fscanf	intersect_objects image_cyl_texture
	1.87	0.00	1 rendercheck	41.91 %
	1.84	0.03	1 ≝engrid_scene	
	1.66	0.04	12 GetTexBody	The sumple and a second s
	1.54	0.76	680 stringcmp	
•			• •	Callees All Callees All Callees A
h	1.54 earind.	0.76	680 stringcmp	Caller Map Parts Coll Graph Callees All Callees A

Perspectives & Futur Work

Questions

Patrice.Gerin@imag.fr

System-Level Synthesis Group TIMA Laboratory 46, Av Félix Viallet, 38031 Grenoble, France