Automatic Generation of Cycle Accurate and Cycle Count Accurate Transaction Level Bus Models from a Formal Model

1

Chen Kang Lo, Ren Song Tsay,

Logos Advanced System Lab,

National Tsing-Hua University, Hsinchu, Taiwan

Outline

- Introduction
- Related Work
- Problem Formulation
- Transaction Level Bus Model Generation
- Experimental Results
- Conclusion and Future Work

Introduction to TLM

Transaction Level Modeling (TLM) is proposed to perform architecture exploration and verification.

Problems of Manual Refinement

Proposed Automatic Approach

- An automatic approach to generate:
 - TL1 (Cycle Accurate) model
 - Cycle Count Accurate TL2 model (CCA-TL2)

Outline

- Introduction
- Related Work
- Problem Formulation
- Transaction Level Bus Model Generation
- Experimental Results
- Conclusion and Future Work

Related Work

- Manual Modeling Techniques
 - M. Caldari, et al., "Transaction-level models for AMBA bus architecture using SystemC 2.0", DATE'03.
 - S. Pasricha, N. Dutt, M. Ben-Romdhane, "Extending the Transaction Level Modeling Approach for Fast Communication Architecture Exploration", DAC'04.
 - Cycle Count Accurate at Transaction Boundary (CCATB)
- Library Based Approaches
 - A. Harverinen, M. Leclercq, N. Weyrich, D. Wingard, "A SystemC[™] OCP Transaction Level Communication Channel", Technical Report'07.

Outline

- Introduction
- Related Work
- Problem Formulation
- Transaction Level Bus Model Generation
- Experimental Results
- Conclusion and Future Work

Bus transaction formal modeling

• A bus transaction is a read/write transfer between master and slave computation modules.

Synchronous Protocol Automaton

- A SPA is a state machine designed for bus modeling.
 - with data and control signals
 - whose state progressing is synchronous with clock

10 V. D'silva, et al., "Synchronous Protocol Automata: A Framework for Modeling and Verification of SoC Communication Architectures", *DATE*, 2004

A Burst Transaction Modeled by a SPA-pair

A Burst Transaction Modeled by a SPA-pair

Observations for Abstracting CA to CCA Model

- 1. Most transitions of the SPA-pair can be *pre-determined* before simulation (at static time).
- 2. A computation module concerns only with data content transferred.
- Reduce the simulation overhead.

Outline

- Introduction
- Related Work
- Problem Formulation
- Transaction Level Bus Model Generation
 - Compression Algorithm
 - SystemC Bus Model Generation
- Experimental Result
- Conclusion and Future Work

• Traces of the compression algorithm with an example with predetermined transitions:

• Traces of the compression algorithm with an example with predetermined transitions:

Collected data operation: MADDR! MADDR?

• Traces of the compression algorithm with an example with predetermined transitions:

Collected data operation: MADDR! MADDR? SRDATA! SRDATA?

> MADDR! MADDR?

Weight: 2

• Traces of the compression algorithm with an example with predetermined transitions:

• Traces of the compression algorithm with an example with predetermined transitions:

Non-predetermined transition

- Two kinds of non-predetermined transitions:
 - control dependent
 - data dependent
- Traverses and compresses each possible path.

Control-dependent Case

22

1st Branch

1st Branch (cont'd)

2nd Branch

- The compression is finished.
 - Cycle Count Timing is preserved.

SystemC Bus Model Generation

- Is implemented in SystemC interface and channel pattern
 - the signals in SPA are translated into
 - variables
 - read/write events
 - data operations implemented as IMC (Interface Method Call).
- Is scheduled
 - in the clock-driven style for the TL1 bus models
 - in the event-driven style for the CCA-TL2 bus models

Experimental Results

- The core protocol, burst write with handshake, from OCP-IP is chosen.
 - Intel 3.40 GHz Xeon CPU
- For speed comparison:

- For accuracy:
 - Compare TL1 bus model cycle-by-cycle.
 - Compare CCA-TL2 bus model at transaction boundaries.

Conclusion & Future Work

- Formally discusses what information between different transaction levels can be simplified.
- Proposes the first automatic approach.
- Considers an automatic approach for multiple masters and multiple slaves with an arbiter in the future.

Thanks for your attention!!

Synchronous Protocol Automata (SPA)

- A synchronous protocol automaton is a tuple (Q,D,C,A, V,
 - \rightarrow , clk, q0, qf), where:
 - Q: a finite set of control states
 - q0, qf: initial state and final state
 - D,C: a set of input or output of data and control signals
 - V: a set of internal variables
 - A: a set of actions
 - $\rightarrow \subset QxQxclk?xA$: transition relations

