
Automatic Generation of Cycle Accurate and 
Cycle Count Accurate Transaction Level Bus 

Models from a Formal Model

Chen Kang Lo, Ren Song Tsay,
Logos Advanced System Lab, 

National Tsing-Hua University, Hsinchu, Taiwan

1



Introduction
Related Work
Problem Formulation
Transaction Level Bus Model Generation
Experimental Results
Conclusion and Future Work

Outline

2



Introduction to TLM
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Transaction Level Modeling (TLM) is proposed to perform 
architecture exploration and verification.
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Problems of Manual Refinement
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Tedious and 
Error-prone 
Re-modeling!!
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CCA-TL2 Bus 
Model

Proposed Automatic Approach
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An automatic approach to generate:
TL1 (Cycle Accurate) model
Cycle Count Accurate TL2 model (CCA-TL2)
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Bus transaction formal modeling
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A bus transaction is a read/write transfer between master 
and slave computation modules.
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Synchronous Protocol Automaton
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A SPA is a state machine 
designed for bus modeling.

with data and control signals
whose state progressing is 
synchronous with clock 

r2

SREADY

SRDATA

MADDR

MADDR!

r0CLK

r1

(a) master interface

SREADY?
SRDATA?
MADDR!

~SREADY? 
MADDR!

r3

SREADY?
SRDATA?

~SREADY?
MADDR!

Control signals

Data signals

states

? : read operation

! : write operation

V. D'silva, et al., "Synchronous Protocol Automata: A Framework for Modeling and Verification of 
SoC Communication Architectures", DATE, 2004



A Burst Transaction Modeled by a SPA-pair
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Observations for Abstracting CA to CCA Model
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1. Most transitions of the SPA-pair can be pre-determined
before simulation (at static time). 

2. A computation module concerns only with data content 
transferred.
Reduce the simulation overhead.
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Problem Formulation
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Compression Algorithm
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• Traces of the compression algorithm with an example 
with predetermined transitions:
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Compression Algorithm
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• Traces of the compression algorithm with an example 
with predetermined transitions:
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Compression Algorithm

18

• Traces of the compression algorithm with an example 
with predetermined transitions:
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• Traces of the compression algorithm with an example 
with predetermined transitions:
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Compression Algorithm
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• Traces of the compression algorithm with an example 
with predetermined transitions:

Collected data 
operation:

Weight: 3
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Non-predetermined transition 
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Two kinds of non-predetermined transitions:
control dependent
data dependent

Traverses and compresses each possible path. 
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Control-dependent Case
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1st Branch
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t1
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1st Branch (cont’d)
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2nd Branch
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SystemC Bus Model Generation
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Is implemented in SystemC interface and channel pattern
the signals in SPA are translated into 

variables
read/write events

data operations implemented as IMC (Interface Method Call).
Is scheduled 

in the clock-driven style for the TL1 bus models
in the event-driven style for the CCA-TL2 bus models



Experimental Results

27

The core protocol, burst write with handshake, from OCP-IP is 
chosen. 

Intel 3.40 GHz Xeon CPU
For speed comparison: 

For accuracy:
Compare TL1 bus model cycle-by-cycle.
Compare CCA-TL2 bus model at transaction boundaries.



Conclusion & Future Work
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Formally discusses what information between 
different transaction levels can be simplified.
Proposes the first automatic approach.
Considers an automatic approach for multiple masters 
and multiple slaves with an arbiter in the future.
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Synchronous Protocol Automata (SPA)
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A synchronous protocol automaton is a tuple (Q,D,C,A, V, 
→, clk, q0, qf), where: 

Q: a finite set of control states
q0, qf: initial state and final state
D,C: a set of input or output of data and control signals
V: a set of internal variables
A: a set of actions
→ ⊂ QxQxclk?xA : transition relations
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