
Automatic Generation of Cycle Accurate and 
Cycle Count Accurate Transaction Level Bus 

Models from a Formal Model

Chen Kang Lo, Ren Song Tsay,
Logos Advanced System Lab, 

National Tsing-Hua University, Hsinchu, Taiwan

1



Introduction
Related Work
Problem Formulation
Transaction Level Bus Model Generation
Experimental Results
Conclusion and Future Work

Outline

2



Introduction to TLM

3

Transaction Level Modeling (TLM) is proposed to perform 
architecture exploration and verification.

More 
Accurate!!

Faster 
Simulation 
Speed!! 

read()
write()

(b) TL2 Bus 
Model

(a) TL3 Model

(d) TL0 Model
(RTL)

read()
write()

(c) TL1 Bus 
Model

TL0
(RTL)

TL1

TL2

TL3

protocol 
timing

none

approximate

cycle accurate

pin/cycle 
accurate



Problems of Manual Refinement

4

Tedious and 
Error-prone 
Re-modeling!!

Difficult 
Consistency 
Checking!!

(b) TL2 Bus 
Model

(a) TL3 Model

(d) TL0 Model
(RTL)

read()
write()

read()
write()

(c) TL1 Bus 
Model

Manually Refine

TL0
(RTL)

TL1

TL2

TL3

protocol 
timing

none

approximate

cycle accurate

pin/cycle 
accurate



CCA-TL2 Bus 
Model

Proposed Automatic Approach

5

An automatic approach to generate:
TL1 (Cycle Accurate) model
Cycle Count Accurate TL2 model (CCA-TL2)

read()
write()

TL2 Bus 
Model

read()
write()

TL1 Bus 
Model

Automatically 
Generate!!!

TL3 Model

A Cycle Accurate Formal 
Bus Transaction Model



Outline

6

Introduction
Related Work
Problem Formulation
Transaction Level Bus Model Generation
Experimental Results
Conclusion and Future Work



Related Work

7

Manual Modeling Techniques
M. Caldari, et al., "Transaction-level models for AMBA bus 
architecture using SystemC 2.0", DATE’03.
S. Pasricha, N. Dutt, M. Ben-Romdhane, "Extending the 
Transaction Level Modeling Approach for Fast Communication 
Architecture Exploration“, DAC’04.

Cycle Count Accurate at Transaction Boundary (CCATB)

Library Based Approaches
A. Harverinen, M. Leclercq, N. Weyrich, D. Wingard, “A 
SystemC™ OCP Transaction Level Communication Channel”, 
Technical Report’07.



Outline

8

Introduction
Related Work
Problem Formulation
Transaction Level Bus Model Generation
Experimental Results
Conclusion and Future Work



Bus transaction formal modeling

9

A bus transaction is a read/write transfer between master 
and slave computation modules.

Slave 
Computation 

Module

Slave Interface

Master Interface

Slave Interface

Slave 
Computation 

Module

Master 
Computation 

Module

Interconnect A Bus transaction 
Formal Model

Read/Write 
Transfer!!!



Synchronous Protocol Automaton

10

A SPA is a state machine 
designed for bus modeling.

with data and control signals
whose state progressing is 
synchronous with clock 

r2

SREADY

SRDATA

MADDR

MADDR!

r0CLK

r1

(a) master interface

SREADY?
SRDATA?
MADDR!

~SREADY? 
MADDR!

r3

SREADY?
SRDATA?

~SREADY?
MADDR!

Control signals

Data signals

states

? : read operation

! : write operation

V. D'silva, et al., "Synchronous Protocol Automata: A Framework for Modeling and Verification of 
SoC Communication Architectures", DATE, 2004



A Burst Transaction Modeled by a SPA-pair

11

r2 t2SREADY

SRDATA

MADDR

MADDR!

r0CLK

r1

(a) master interface

SREADY?
SRDATA?
MADDR!

~SREADY? 
MADDR!

SREADY

MADDR

SRDATA

CLK

(b) slave interface

MADDR?

t1

t0

SREADY!
SRDATA!
MADDR?

r3

SREADY?
SRDATA?

t3

SREADY!
SRDATA!

~SREADY?
MADDR!

Cycle: 0

data write data read



SREADY!
SRDATA!
MADDR?

SREADY?
SRDATA?
MADDR!

A Burst Transaction Modeled by a SPA-pair

12

r2 t2SREADY

SRDATA

MADDR

MADDR!

r0CLK

r1

(a) master interface

~SREADY? 
MADDR!

SREADY

MADDR

SRDATA

CLK

(b) slave interface

MADDR?

t1

t0

r3

SREADY?
SRDATA?

t3

SREADY!
SRDATA!

~SREADY?
MADDR!

Cycle: 123

control read: condition

1



Observations for Abstracting CA to CCA Model

13

1. Most transitions of the SPA-pair can be pre-determined
before simulation (at static time). 

2. A computation module concerns only with data content 
transferred.
Reduce the simulation overhead.

r2 t2

r0

r1 t1

t0

r3 t3

Master 
Computation 

Module

Slave
Computation 

Module

weight(3)

<r0/t0>

<r3/t3>

MADDR!
MADDR?
SRDATA!
SRDATA?
MADDR?
MADDR!
SRDATA!
SRDATA?



Problem Formulation

14

A SPA-pair 
(A trasaction)

Compressed 
Automata

Compression
Algorithm

SystemC 
Model

Generation

CCA-TL2 
Bus Model

SystemC 
Model

Generation

TL1 Bus 
Model

weight(3)

<r0/t0>

<r3/t3>

MADDR!
MADDR?
SRDATA!
SRDATA?
MADDR?
MADDR!
SRDATA!
SRDATA?

SystemC
Simulator



Outline

15

Introduction
Related Work
Problem Formulation
Transaction Level Bus Model Generation

Compression Algorithm
SystemC Bus Model Generation

Experimental Result
Conclusion and Future Work



Compression Algorithm

16

• Traces of the compression algorithm with an example 
with predetermined transitions:

MADDR!

r0

MADDR?

t0 <r 0/t 0>

MADDR!

r0

MADDR?

t0

MADDR!

r0

MADDR?

t0

r2 t2

SREADY

SRDATA

MADDR

MADDR!

r0CLK

r1

(a) Master interface

SREADY?
SRDATA?
MADDR!

~SREADY? 
MADDR!

SREADY

MADDR

SRDATA

CLK

(b) slave interface

MADDR?

t1

t0

SREADY!
SRDATA!
MADDR?

r3

SREADY?
SRDATA?

t3

SREADY!
SRDATA!

~SREADY?
MADDR! Generated 

Compressed 
Automaton



Compression Algorithm

17

• Traces of the compression algorithm with an example 
with predetermined transitions:

Collected data 
operation:

Weight:

MADDR!
MADDR?

1

MADDR!

r0

MADDR?

t0

<r0/t0>



Compression Algorithm

18

• Traces of the compression algorithm with an example 
with predetermined transitions:

Collected data 
operation:

Weight:

MADDR!
MADDR?
SRDATA!
SRDATA?
MADDR!
MADDR?

2

SREADY!
SRDATA!
MADDR?

t0r0

r1

SREADY?
SRDATA?
MADDR!

~SREADY? 
MADDR!

t1

<r0/t0>



SREADY?
SRDATA?

SREADY!
SRDATA!

Compression Algorithm

19

• Traces of the compression algorithm with an example 
with predetermined transitions:

Collected data 
operation:

Weight: 3

<r0/t0>

r0

r1

r2

t0

t1

t2

MADDR!
MADDR?
SRDATA!
SRDATA?
MADDR!
MADDR?
SRDATA!
SRDATA?



Compression Algorithm

20

• Traces of the compression algorithm with an example 
with predetermined transitions:

Collected data 
operation:

Weight: 3

weight(3)

<r0/t0>

<r3/t3>

MADDR!
MADDR?
SRDATA!
SRDATA?
MADDR!
MADDR?
SRDATA!
SRDATA?

r0

r1

r2

r3

t0

t1

t2

t3

MADDR!
MADDR?
SRDATA!
SRDATA?
MADDR!
MADDR?
SRDATA!
SRDATA?



Non-predetermined transition 

21

Two kinds of non-predetermined transitions:
control dependent
data dependent

Traverses and compresses each possible path. 

r2 t2

r0

r1 t1

t0

r3 t3

Master 
Computation 

Module

Slave
Computation 

Module

control

data



SREADY?
SRDATA?
MADDR!

22

Control-dependent Case

MADDR DataOk

CLK

SREADY

SRDATA

t2

MADDR?

t1

t0

DataOK?
SREADY!
SRDATA!
MADDR?

t3

SREADY!
SRDATA!

~DataOK?
SREADY!0

(b) A control-dependent 
slave interface

r2
SREADY

SRDATA

MADDR

MADDR!

r0CLK

r1

(a) master interface

~SREADY? 
MADDR!

r3

SREADY?
SRDATA?

~SREADY?
MADDR!

< r1/t1 >

weight(1)

<r0/t0>

MADDR!
MADDR?



23

1st Branch

MADDR

DataOk

CLK

SREADY

SRDATA

t2

MADDR?

t1

t0

t3

SREADY!
SRDATA!

(b) A control-dependent 
slave interface

r2

SREADY

SRDATA

MADDR

MADDR!

r0CLK

r1

(a) Master interface

SREADY?
SRDATA?
MADDR!

~SREADY? 
MADDR!

r3

SREADY?
SRDATA?

~SREADY?
MADDR!



t1

24

1st Branch (cont’d)

< r1/t1 >~DataOK?
weigth(1)

weight(1)

<r0/t0>

MADDR

DataOk

CLK

SREADY

SRDATA

t2

MADDR?

t0

DataOK?
SREADY!
SRDATA!
MADDR?

t3

SREADY!
SRDATA!

~DataOK?
SREADY! 0

A control-dependent slave interface

r2

SREADY

SRDATA

MADDR

MADDR!

r0CLK

r1

Master interface

SREADY?
SRDATA?
MADDR!

~SREADY? 
MADDR!

r3

SREADY?
SRDATA?

~SREADY?
MADDR!



25

2nd Branch

SREADY?
SRDATA?
MADDR!

SREADY?
SRDATA?

DataOK?
SREADY!
SRDATA!
MADDR?

SREADY!
SRDATA!

< r1/t1 >

DataOK?
weight(2)

~DataOK?
weigth(1)

weight(1)

<r0/t0>

<r3/t3>

MADDR

DataOk

CLK

SREADY

SRDATA

MADDR?

~DataOK?
SREADY!0

A control-dependent slave interface

r2

SREADY

SRDATA

MADDR

MADDR!

r0CLK

r1

Master interface

~SREADY? 
MADDR!

~SREADY?
MADDR!

t2

t1

t0

t3

The compression is finished. 
Cycle Count Timing is preserved. 



SystemC Bus Model Generation

26

Is implemented in SystemC interface and channel pattern
the signals in SPA are translated into 

variables
read/write events

data operations implemented as IMC (Interface Method Call).
Is scheduled 

in the clock-driven style for the TL1 bus models
in the event-driven style for the CCA-TL2 bus models



Experimental Results

27

The core protocol, burst write with handshake, from OCP-IP is 
chosen. 

Intel 3.40 GHz Xeon CPU
For speed comparison: 

For accuracy:
Compare TL1 bus model cycle-by-cycle.
Compare CCA-TL2 bus model at transaction boundaries.



Conclusion & Future Work

28

Formally discusses what information between 
different transaction levels can be simplified.
Proposes the first automatic approach.
Considers an automatic approach for multiple masters 
and multiple slaves with an arbiter in the future.



Thanks for your attention!!

29



Synchronous Protocol Automata (SPA)

30

A synchronous protocol automaton is a tuple (Q,D,C,A, V, 
→, clk, q0, qf), where: 

Q: a finite set of control states
q0, qf: initial state and final state
D,C: a set of input or output of data and control signals
V: a set of internal variables
A: a set of actions
→ ⊂ QxQxclk?xA : transition relations

r1

SREADY?
SRDATA?
MADDR!

~SREADY?
SRDATA?
MADDR!

t1

SREADY!
SRDATA!
MADDR?

r2
t2

r1, t1

r1, t2 r2, t2

(b) Corresponding State chart(a) A segment of SPA


