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Designing Embedded Systems

� Embedded Microprocessors

� Application-Specific Integrated Circuits (ASICs)

� Application-Specific Instruction set Processors (ASIPs)

� Extensible Processors
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Extensible Processors

� Mechanism

� Acceleration by using CFU

� a hardware is augmented to the base processor 

� Executes hot portions of applications
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Extensible Processors

� Base processor (BP)'s fixed instruction set + Custom Instructions 

� Goals

� Improving the performance and energy efficiency

� Maintaining compatibility and flexibility

CPU

Instruction Dispatcher 

Register File

+ & x LD/ST CFU1 CFU2
LD/ST: Load / Store

CFU: Custom Functional Unit
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Custom Instructions

� Instruction set customization �� hardware/software partitioning 
(Identifying critical segments in applications)

� Custom Instructions (CIs) are
� extracted from critical segments of an application and

� executed on a Custom Functional Unit (CFU)

1: SUBU    R3, R0, R3
2: ADDU    R10, R0, R0
3: SRA       R8, R10, 0x3
4: SLT        R2, R3, R8
5: BNE       R0,400488, R2

ADDU

SRA

SLT

SUBU

BNE

R3R0 R0R0

R10

R8

R2

R2

R3

0x3

400488

2

3

4

5

1

A Custom Instruction

A CI can be represented as a DFG

Critical segments:

Most frequently executed (Hot) portions of the applications
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Extensible Processors

� Drawbacks: 

� Lack of flexibility

� Long time and cost of designing and verifying

� Many issues associated with designing a new 

processor from scratch:

• longer time-to-market and 

• significant NRE (Non-Recurring Engineering) costs

� Solution

� Using a Reconfigurable Functional Unit (RFU) 

instead of fixed architecture CFU
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Reconfigurable Processors

Microprocessor
Reconfigurable

Logic

Reconfigurable

Processor



9/XXXIIASPDAC2009@ Yokohama, Japan Jan. 19-22, 2009  System LSI, Kyushu Univ.

Processor coupling

Coprocessor
Processor

RFU

Memory

Attached 

Processor

Bridge

Tight
Coupling
(OneChip)
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Reconfigurable Instruction Set Processors (RISPs)

� Adding and generating custom instructions after fabrication

� Using a reconfigurable FU(RFU) instead of custom FU

CPU

Instruction Dispatcher 

Register File

+ & x LD/ST CFU1 CFU2RFU Config

Mem

CFU: Custom Functional Unit

RFU: Reconfigurable Functional Unit



11/XXXIIASPDAC2009@ Yokohama, Japan Jan. 19-22, 2009  System LSI, Kyushu Univ.

How a RISP Works

GPP: General Purpose Processor

RAC=RFU: Reconfigurable Accelerator

400680 subiu $25,$25,1
400688 lbu $13,0($7)
400690 lbu $2,0($4)
400698 sll $2,$2,0x18
4006a0 sra $14,$2,0x18
4006a8 addiu $4,$4,1
4006b0 srl $8,$2,0x1c
4006b8 sll $2,$8,0x2
4006c0 addu $2,$2,$25
4006c8 lw $2,0($2)
4006d0 xori $13,$13,1
4006d8 addu $10,$10,$2
400680 subiu $25,$25,1
400698 sll $2,$2,0x18
4006a0 sra $14,$2,0x18
400688 lbu $13,0($7)
4006e0 bgez $10,4006f0
.

.

.

A Hot Basic Block

RISP
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RISP Benefits and Drawbacks

Benefits

� Specialized datapath

� Shared hardware

� Higher Speedup

� Less power consumption

Drawbacks

� More area

� Difficult to use
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Performance Evaluation of a RISP

� Performance evaluation of a RISP challenges 

� designing of a RISP architecture

� optimizing an existing arch. for an objective function

� For a designer 

� obtaining optimum system configuration is desirable

� a performance analysis in terms of the performance metrics (speedup, 
area and so on) is required 

� Performance evaluation models

� Structural models: includes empirical studies based on measurements 
and simulations of the target system

� Analytical models: incorporates a system (usually simplified) structure 
to obtain mathematically solvable models
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Model Extraction and Utilization
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General Template of a RISP
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Basic Model Definitions

� Base Processor 
� an in-order general five-stage RISC processor 

� RAC
� a coarse-grained tightly-coupled reconfigurable hardware 

� CIs are indexed for direct accessing of the configuration bit-stream

� The content of all registers are sent to the RAC (Shared RF)

� Controlling configurations 
� Hardware-based: starting address of CI and index to the config. Mem. is stored in a CAM 

for quick retrieval

� Software-based: starting address of a CI is replaced with a special instruction

� Memory accesses 

� Control instructions
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Single and Continuous Executions

Single 

Execution

Continuous 

Execution
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Speedup Formulation
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The Effect of CI Length

� Large CIs 

� Including more instructions than the no. of available resources in the 

RAC 

� Temporal Partitioning

� Dividing larger CIs to a number of smaller CIs 
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Side-Effects

� Control Instructions

� the rate of miss-predicted branches might be reduced � higher

speedup

� Instruction Cache Misses

� no need for fetching instructions belonging to the CIs

� access and miss rates to instruction cache are reduced

� BP fraction reduces� speedup increases
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RF’s Input/Output Ports 

� Register file is shared between BP and RAC 

� Additional clock cycles for reading/writing from/to the RF
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The Assumed RAC Architecture
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RAC’s Delay

� All FUs in the RAC implement similar operations 

� Each mux receives

� all outputs of the FUs in upper rows and 

� Outputs from its adjacent FUs at the same row
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Simplification and Calibration-

Fraction of Dynamic Instructions in Applications
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the RAC is responsible for executing almost 30% of dynamic 

instructions of applications in average 
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Simplification and Calibration-

Effect of caches

� Control instructions are not supported 

� Reduction in instruction cache accesses as well as cache misses

� average reduction in access to i-cache is almost 17% 

� average i-cache miss rate is almost 3%.  
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Simplification and Calibration-

Single and continuous executions 
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Experimental Setup

� Fourteen applications of Mibench 

� automotive, security, consumer, network, telecommunication

� CIs (DFGs) are extracted from applications 

� Simplescalar’s cycle-accurate simulator is extended to simulate a 
reconfigurable instruction set processor

� Model Construction 

� simulating all applications

� collecting required information 

� model simplification and calibration

~ 4 hours to completion on a 

PC: Dual Core, Intel 

6600@2400Mhz, 2GB RAM 
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Model Validation
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Design Space Exploration Using CAnSO

� The design of a RAC including different components 

entails a multitude of design parameters 

� Examining 100 design points using 14 applications:

� Simulation: 17 days

� CAnSO: 4 hours

� Using CAnSO, re-simulation is not needed after 

establishing the model
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Using CAnSO for Design Space Exploration of the RAC
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Increasing the width of RAC increases speedup

Width> 6: no more speedup is achievable

the small heights ���� very low speedup

Height> 5: RAC’s longer critical path delay�

speedup declines
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Effect of Modifications
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Applying modification to the design����
- Small time is required for repeating the simulation 

- Each iteration of the CAnSO takes less than a minute
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CONCLUSION

� Reconfigurable instruction set processors

� A combined analytical and simulation-based model  (CAnSO) 

� Suitable for exploring a large design space for the accelerator

� Sufficient flexibility in a rapid evaluation of modified target architectures  

� Substantially reduce the design or optimization time while preserving a 
reasonable accuracy 

� Proves less than 2% variation in evaluation results

� Uncalibrated CAnSO depicts 22% difference in average

� Future work:
� Expanding CAnSO to support control instructions
� Considering more complicated RAC architectures

Thanks for your attention!


