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What are Clock Domains?

m All sequential logic is controlled by a clock

m All logic that is driven by a single clock (or
inversions or divisions of that clock) defines a
clock domain
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What are Clock Domain Crossings?

= Signals that connect clock domains (to transfer
data from one domain into the other) are called
clock-domain crossings or CDCs

l Clock Domain Crossing sign}al
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Clock domain B




What are the Problems with CDCs?

m Setup/hold violations occur across clock domains

s When setup/hold conditions are violated, the output of a
storage element becomes unpredictable

Setup/hold window
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What Can Go Wrong with CDCs?

— Clock Domain A — | Clock Domain B —

Synchronization (DC Protocal (DC Reconvergence
Error Error Error

o @
1. Missing or incorrect synchronizers
2. Incorrectly implemented CDC protocols

3. Design does not account for nondeterministic delay
through synchronizers (a.k.a. reconvergence error)
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Current Solutions

Static Timing Analysis
— Manual Inspection
Structural detection
— Not checking for protocol
Simulation
— Very good way to find problem,
— Cannot prove the CDC is good by design

Post-CDC Formal Analysis

— Capacity and runtime problem — usually runs on block only
— Not fully automatic
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Proposed Solution

m Fully Automatic CDC formal solution that can run
on chip level

m Formal analysis is run alongside with the
structural analysis — no need for a post-CDC
analysis step

m There are 2 parts

— Commonly seen CDC protocols and the checks
necessary to prove the protocol

— Assertion Synthesis Algorithms
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Problem #1 : Synchronizing Multiple bit signals

s Even with synchronizers, multi-bit CDC signals
are not guaranteed to be correctly received by the
receiving domain
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Solution

= Signal needs to be gray-coded

s Gray coding the signal ensures that only valid
signal reaches the receiving domain
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Gray Coding Check

s Verify that at most one bit changes for each
transmitting clock cycle

!(l(e & ~((~e)+ 1)))==TRUE (1)
In which e = Tx1 " Tx2

Txl & Tx2 are the values of the transmitting register for 2 consecutive

timeframes
(1) Is necessary & sufficient condition
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Problem #2: Verify sighal got sampled

tx_clk

rx_clk I

tx




Stability Check

s To guarantee that the receiving domain register samples
the correct value

s Necessary for signals going from fast to slow clocks
s The transmitting signal must be stable for N clock cycles

N = Fa +1

= N : number of stable cycles the transmitting signal must be stablized
n P, :Period of RX clock
n P, :Period of TX clock
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Proving Stability Check

m Definition 1. If a signal remains at least N clock
cycles stable for each new value, it is called an N-
cycle-stable signal.

s Lemma 1. For a CDC signal e, the sufficient and
necessary condition for it to be a N-cycle-stable
signal is that for any N consecutive cycles, e only
changes no more than once.

e
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Proof #1

= Direct translation of lemma 1 gives you:

N-1 N-1 N-1
(/\S S,+1)v{v[(S SN A (S, =801 G
Jj=0, j#i
Where :

S : CDC Signal
S;: Value at time i

Complexity : O(N?)

—
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Proof #2

m Force the value change happens at the beginning of
N consecutive clock cycles, we got the formula
below

N—

1
(So #5) = A(S;=5,,)

Complexity : O(N)
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Proof #1 vs Proof #2

s Proof #1 catches more bugs than Prove #2
— Proof #1 catches 3 windows
— Proof #2 catches 1 window
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Problem #3: Handshake Scheme

n bit
\ data \
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sequential —> sequential
logic cloud g E logic cloud in
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(clk2 to clkl)

data transfer
acknowledge (ack)
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Handshake Check

s Checks necessary for handshake scheme

— Once signal req gets asserted, it remains asserted until signal
ack is asserted

— Once signal ack gets asserted, it remains asserted until signal
req gets deasserted

— Signal req doesn’t assert again until ack gets deasserted

— During the assertion of req and ack, the data has to remain
stable
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Assertion Logic Synthesis

s Protocols described above can be synthesized into
assertion logic to be used by formal

— Static-timeframe check
— Dynamic-timeframe check
m Static timeframe check

— Difference between ending timeframe and starting
timeframe is constant

s Dynamic timeframe check

— Difference between ending timeframe and starting
timeframe is changing

-




Examples

s Examples of static-timeframe checks
— Gray-code check
— Stability check

s Examples of Dynamic-timeframe checks
— Handshake
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Static-timeframe Assertion Synthesis

m For each signal in different timeframes, we add
registers to represent the delay between
timeframes

s Compare these delayed signals using
combinational logic

e
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Synthesized Assertion for Gray-Coding Check

é‘:’g a ‘ Failure Signal

x1 Tx2

!(I(e & ~((~e)+ 1’b1)))==TRUE (1)
In which e =Tx1 " Tx2

Tx1 & Tx2 are the values of the transmitting register for 2 consecutive
timeframes
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Dynamic-timeframe Assertion Synthesis

Input Output
NFA ————> DFA ————> Circuit

Synthesizing Dynamic-Timeframe Chec

m Transform the checks into NFA
m Transform the NFA into DFA

s Synthesize DFA into a circuit
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NFA for handshake

req

From LHS
Acceptance

S1 ack _ @

s Once signal req gets asserted, it remains asserted
until signal ack is asserted

|owbon 3
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DFA for handshake check

req & lack
From LHS Acceptance
ack @

Failure
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Traditional Formal Analysis

m Flow
— Perform static CDC analysis
— Collect all the assertions after CDC analysis

— Synthesizing all the assertions together with the
design to form formal netlist

— Run formal algorithm
s Problems

— Capacity

— Performance

s




Automatic Formal CDC Flow

s During CDC static analysis, create a local circuit
for each CDC property at interest

s Keep bring in larger circuit until budget is used up
or the property is proven

= Any unproven property will generate assertions to
run for simulation
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Automatic Formal CDC Flow

1: Formal_CDC (B, P) {

2 For_each_CDC_boundary(B, B) {

3 Proven = FALSE;

4 If (B needs to be verified) {

5: E = Extract_local_circuit_as_an_abstraction(p);
6: C = Create_formal_netlist(E);
7 Proven = Formal_verify(C);
8: }

9: If (Proven == FALSE)

10: insert(P, B);

11: }

12: }

13:

14: CDC_Analysis(€2) {

15: B = Structure_analysis(€2);
16:  Formal_CDC(B, P);

17:  Checker_promotion(P);

18: }

Q : Flattened Netlist

B : CDC boundary

P : empty queue, will contain all the non-proven CDC boundaries
B : CDC boundary

e
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Experimental Results

Post-CDC Formal| Auto formal CDC

Testcase| Time Proven | Time Proven | Total Size
testcase1 16 1 6 1 3 160
testcase?2 21 5 9 5 8 176
testcase3d 25 9 8 7 12 194
testcase4 89 5 13 1 7 302
testcase5 526 3 125 2 5 414
testcaseb6 51 6 14 1 8 315
testcase7/ 385 128 187 106 370 3554
testcase8 92 10 31 7 21 6997
testcase9| 12509 48 2586 23 71 7648
testcase1lq 912 | 100 | 166 11286
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Conclusion

s Discussed various CDC protocols

s Proposed a fully automatic approach to formally
verify CDC protocols at chip level

s Experiments showed our new approach can prove
a large portion of the assertions in a much shorter
time
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