
Automatic Formal Verification of

Clock Domain Crossing Signals

Bing Li, Chris Kwok

Initials, Presentation Subject, Month 2004

2

Outline

� CDC Problem Overview

� Current Solutions and Limitations

� Proposed Solution

� Experimental Results

� Conclusion

Initials, Presentation Subject, Month 2004

3

� All sequential logic is controlled by a clock

� All logic that is driven by a single clock (or

inversions or divisions of that clock) defines a

clock domain

What are Clock Domains?

LogicLogic

Clock domain A
CLK_A

divCLK_A

Initials, Presentation Subject, Month 2004

4

What are Clock Domain Crossings?

� Signals that connect clock domains (to transfer

data from one domain into the other) are called

clock-domain crossings or CDCs

AA

LogicLogic
Tx Rx

Clock domain A Clock domain B
BB

Clock Domain Crossing signal

Initials, Presentation Subject, Month 2004

5

What are the Problems with CDCs?

� Setup/hold violations occur across clock domains

� When setup/hold conditions are violated, the output of a

storage element becomes unpredictable

� This non-deterministic effect is called metastability

din tff
MTBF

clk ××
=

1

fclk = Clock Frequency
fin = Input Signal Frequency
td = Duration of critical time window

CLK

D

Q

CLK

D Q
Domain ADomain A

Domain BDomain B

Setup/hold window

Initials, Presentation Subject, Month 2004

6

Designers Use Synchronizers to Isolate
Metastability

QQ

Clock AClock A Clock BClock B

ii i +1i +1 i +2i +2i i --11ii i +1i +1 i +2i +2i i --11

TxTx

Metastability window

RxRx

ii i +1i +1 i +2i +2i i --11 i +3i +3

Initials, Presentation Subject, Month 2004

7

What Can Go Wrong with CDCs?

1. Missing or incorrect synchronizers

2. Incorrectly implemented CDC protocols

3. Design does not account for nondeterministic delay

through synchronizers (a.k.a. reconvergence error)

1 32

Initials, Presentation Subject, Month 2004

8

Current Solutions

� Static Timing Analysis

— Manual Inspection

� Structural detection

— Not checking for protocol

� Simulation

— Very good way to find problem,

— Cannot prove the CDC is good by design

� Post-CDC Formal Analysis

— Capacity and runtime problem – usually runs on block only

— Not fully automatic

Initials, Presentation Subject, Month 2004

9

Proposed Solution

� Fully Automatic CDC formal solution that can run

on chip level

� Formal analysis is run alongside with the

structural analysis – no need for a post-CDC

analysis step

� There are 2 parts

— Commonly seen CDC protocols and the checks

necessary to prove the protocol

— Assertion Synthesis Algorithms

Initials, Presentation Subject, Month 2004

10

Problem #1 : Synchronizing Multiple bit signals

D

u0 u1

D

u2

000 000 --> 101> 101 000 000 --> 000 > 000 --> 101> 101

000 000 --> 001 > 001 --> 101> 101

000 000 --> 100 > 100 --> 101> 101

000 000 --> 101 > 101 --> 101> 101

� Even with synchronizers, multi-bit CDC signals

are not guaranteed to be correctly received by the

receiving domain

Initials, Presentation Subject, Month 2004

11

Solution

� Signal needs to be gray-coded

� Gray coding the signal ensures that only valid

signal reaches the receiving domain

000 000 --> 100> 100 000 000 --> 000 > 000 --> 100> 100

000 000 --> 100 > 100 --> 100> 100

D

u0 u1

D

u2

Initials, Presentation Subject, Month 2004

12

Gray Coding Check

� Verify that at most one bit changes for each

transmitting clock cycle

!(|(e & ~((~e)+ 1)))==TRUE (1)

In which e = Tx1 ^ Tx2

Tx1 & Tx2 are the values of the transmitting register for 2 consecutive

timeframes

(1) Is necessary & sufficient condition

D

Tx Rx1

D

Rx2

Tx2Tx2 Tx1Tx1

Initials, Presentation Subject, Month 2004

13

Problem #2: Verify signal got sampled

tx_clk

rx_clk

tx

rx

Initials, Presentation Subject, Month 2004

14

Stability Check

� To guarantee that the receiving domain register samples

the correct value

� Necessary for signals going from fast to slow clocks

� The transmitting signal must be stable for N clock cycles

1+

=

tx

rx

P

P
N

� N : number of stable cycles the transmitting signal must be stablized

� Prx : Period of RX clock

� Ptx : Period of TX clock

Initials, Presentation Subject, Month 2004

15

Proving Stability Check

� Definition 1. If a signal remains at least N clock

cycles stable for each new value, it is called an N-

cycle-stable signal.

� Lemma 1. For a CDC signal e, the sufficient and

necessary condition for it to be a N-cycle-stable

signal is that for any N consecutive cycles, e only

changes no more than once.

Initials, Presentation Subject, Month 2004

16

Proof #1

� Direct translation of lemma 1 gives you:

Where : Where :

SS : CDC Signal: CDC Signal

SSii : Value at time : Value at time ii

Complexity : O(N2)

)]} (3)()[({)(1

1

,0
1

1

0
1

1

0

+

−

≠=
+

−

=
+

−

=

=∧≠∨= ∧∨∧ jj

N

ijj
ii

N

i
ii

N

i

SSSSSS

Initials, Presentation Subject, Month 2004

17

Proof #2

� Force the value change happens at the beginning of

N consecutive clock cycles, we got the formula

below

)()(1

1

1
10 +

−

=
=∧→≠ ii

N

i
SSSS

Complexity : O(N)Complexity : O(N)

Initials, Presentation Subject, Month 2004

18

Proof #1 vs Proof #2

� Proof #1 catches more bugs than Prove #2

— Proof #1 catches 3 windows

— Proof #2 catches 1 window

Signal SCounter example
for Proof #2

Counter example
for Proof #1

Clock

Initials, Presentation Subject, Month 2004

19

Problem #3: Handshake Scheme

n bit
data

hold sample

clk1
(tx)

clk2
(rx)

synchronizer
(clk1 to clk2)

synchronizer
(clk2 to clk1)

data valid (req)

data transfer
acknowledge (ack)

sequential

logic cloud in

clk2 domain

sequential

logic cloud

in clk1 domain

req

ack

Initials, Presentation Subject, Month 2004

20

Handshake Check

� Checks necessary for handshake scheme

— Once signal req gets asserted, it remains asserted until signal

ack is asserted

— Once signal ack gets asserted, it remains asserted until signal

req gets deasserted

— Signal req doesn’t assert again until ack gets deasserted

— During the assertion of req and ack, the data has to remain

stable

req

ack

Initials, Presentation Subject, Month 2004

21

Assertion Logic Synthesis

� Protocols described above can be synthesized into
assertion logic to be used by formal

— Static-timeframe check

— Dynamic-timeframe check

� Static timeframe check

— Difference between ending timeframe and starting
timeframe is constant

� Dynamic timeframe check

— Difference between ending timeframe and starting
timeframe is changing

Initials, Presentation Subject, Month 2004

22

Examples

� Examples of static-timeframe checks

— Gray-code check

— Stability check

� Examples of Dynamic-timeframe checks

— Handshake

Initials, Presentation Subject, Month 2004

23

Static-timeframe Assertion Synthesis

� For each signal in different timeframes, we add

registers to represent the delay between

timeframes

� Compare these delayed signals using

combinational logic

Initials, Presentation Subject, Month 2004

24

Synthesized Assertion for Gray-Coding Check

~

+

1

~

& |

Failure Signal

Tx1 Tx2

!(|(e & ~((~e)+ 1’b1)))==TRUE (1)

In which e = Tx1 ^ Tx2

Tx1 & Tx2 are the values of the transmitting register for 2 consecutive

timeframes

Initials, Presentation Subject, Month 2004

25

Dynamic-timeframe Assertion Synthesis

� Transform the checks into NFA

� Transform the NFA into DFA

� Synthesize DFA into a circuit

NFA DFA Circuit

Synthesizing Dynamic-Timeframe Checker

Input Output

Initials, Presentation Subject, Month 2004

26

NFA for handshake

� Once signal req gets asserted, it remains asserted

until signal ack is asserted

S1 S2ack

req

Acceptance
From LHS

Initials, Presentation Subject, Month 2004

27

DFA for handshake check

S1 S2ack

req & !ack

Acceptance
From LHS

S3

Failure

!req & !ack

Initials, Presentation Subject, Month 2004

28

Traditional Formal Analysis

� Flow

— Perform static CDC analysis

— Collect all the assertions after CDC analysis

— Synthesizing all the assertions together with the

design to form formal netlist

— Run formal algorithm

� Problems

— Capacity

— Performance

Initials, Presentation Subject, Month 2004

29

Automatic Formal CDC Flow

� During CDC static analysis, create a local circuit

for each CDC property at interest

� Keep bring in larger circuit until budget is used up

or the property is proven

� Any unproven property will generate assertions to

run for simulation

Initials, Presentation Subject, Month 2004

30

Automatic Formal CDC Flow

ΩΩΩΩ : Flattened Netlist

B : CDC boundary

P : empty queue, will contain all the non-proven CDC boundaries

ββββ : CDC boundary

 1: Formal_CDC (B, P) {
2: For_each_CDC_boundary(B, β) {

3: Proven = FALSE;

4: If (β needs to be verified) {

5: E = Extract_local_circuit_as_an_abstraction(β);
6: C = Create_formal_netlist(E);

7: Proven = Formal_verify(C);

8: }
9: If (Proven == FALSE)

10: insert(P, β);
11: }

12: }

13:
14: CDC_Analysis(Ω) {

15: B = Structure_analysis(Ω);

16: Formal_CDC(B, P);

17: Checker_promotion(P);

18: }

Initials, Presentation Subject, Month 2004

31

Experimental Results

Testcase Time Proven Time Proven Total Size

testcase1 16 1 6 1 3 160

testcase2 21 5 9 5 8 176

testcase3 25 9 8 7 12 194

testcase4 89 5 13 1 7 302

testcase5 526 3 125 2 5 414

testcase6 51 6 14 1 8 315

testcase7 385 128 187 106 370 3554

testcase8 92 10 31 7 21 6997

testcase9 12509 48 2586 23 71 7648

testcase10 912 42 100 6 166 11286

Total 14626 257 3079 159 671 31046

P o st-C D C F o rmal A uto fo rmal C D C

20%20% 62%62%

Initials, Presentation Subject, Month 2004

32

Conclusion

� Discussed various CDC protocols

� Proposed a fully automatic approach to formally

verify CDC protocols at chip level

� Experiments showed our new approach can prove

a large portion of the assertions in a much shorter

time

