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� All sequential logic is controlled by a clock

� All logic that is driven by a single clock (or 

inversions or divisions of that clock) defines a 

clock domain

What are Clock Domains?

LogicLogic

Clock domain A
CLK_A

divCLK_A
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What are Clock Domain Crossings?

� Signals that connect clock domains (to transfer 

data from one domain into the other) are called 

clock-domain crossings or CDCs

AA

LogicLogic
Tx Rx

Clock domain A Clock domain B
BB

Clock Domain Crossing signal
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What are the Problems with CDCs?

� Setup/hold violations occur across clock domains

� When setup/hold conditions are violated, the output of a 

storage element becomes unpredictable

� This non-deterministic effect is called metastability

din tff
MTBF

clk ××
=

1

fclk = Clock Frequency
fin = Input Signal Frequency
td = Duration of critical time window
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Designers Use Synchronizers to Isolate 
Metastability

QQ

Clock AClock A Clock BClock B
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What Can Go Wrong with CDCs?

1. Missing or incorrect synchronizers

2. Incorrectly implemented CDC protocols

3. Design does not account for nondeterministic delay 

through synchronizers (a.k.a. reconvergence error)

1 32
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Current Solutions

� Static Timing Analysis 

— Manual Inspection

� Structural detection

— Not checking for protocol

� Simulation

— Very good way to find problem, 

— Cannot prove the CDC is good by design

� Post-CDC Formal Analysis

— Capacity and runtime problem – usually runs on block only

— Not fully automatic
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Proposed Solution

� Fully Automatic CDC formal solution that can run 

on chip level

� Formal analysis is run alongside with the 

structural analysis – no need for a post-CDC 

analysis step

� There are 2 parts

— Commonly seen CDC protocols and the checks 

necessary to prove the protocol

— Assertion Synthesis Algorithms 
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Problem #1 : Synchronizing Multiple bit signals

D

u0 u1

D

u2

000 000 --> 101> 101 000 000 --> 000 > 000 --> 101> 101

000 000 --> 001 > 001 --> 101> 101

000 000 --> 100 > 100 --> 101> 101

000 000 --> 101 > 101 --> 101> 101

� Even with synchronizers, multi-bit CDC signals 

are not guaranteed to be correctly received by the 

receiving domain
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Solution

� Signal needs to be gray-coded

� Gray coding the signal ensures that only valid 

signal reaches the receiving domain

000 000 --> 100> 100 000 000 --> 000 > 000 --> 100> 100

000 000 --> 100 > 100 --> 100> 100

D

u0 u1

D

u2
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Gray Coding Check

� Verify that at most one bit changes for each 

transmitting clock cycle

!(|(e & ~((~e)+ 1)))==TRUE            (1)

In which e = Tx1 ^ Tx2

Tx1 & Tx2 are the values of the transmitting register for 2 consecutive 

timeframes

(1) Is necessary & sufficient condition

D

Tx Rx1

D

Rx2

Tx2Tx2 Tx1Tx1
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Problem #2: Verify signal got sampled

tx_clk

rx_clk

tx

rx
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Stability Check

� To guarantee that the receiving domain register samples 

the correct value

� Necessary for signals going from fast to slow clocks

� The transmitting signal must be stable for N clock cycles

1+







=

tx

rx

P

P
N

� N : number of stable cycles the transmitting signal must be stablized

� Prx : Period of RX clock

� Ptx : Period of TX clock 
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Proving Stability Check

� Definition 1. If a signal remains at least N clock 

cycles stable for each new value, it is called an N-

cycle-stable signal.

� Lemma 1. For a CDC signal e, the sufficient and 

necessary condition for it to be a N-cycle-stable 

signal is that for any N consecutive cycles, e only 

changes no more than once.
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Proof #1

� Direct translation of lemma 1 gives you:

Where : Where : 

SS : CDC Signal: CDC Signal

SSii : Value at time : Value at time ii

Complexity : O(N2)
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Proof #2

� Force the value change happens at the beginning of 

N consecutive clock cycles, we got the formula 

below

)()( 1

1

1
10 +
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N
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Complexity : O(N)Complexity : O(N)
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Proof #1 vs Proof #2

� Proof #1 catches more bugs than Prove #2

— Proof #1 catches 3 windows

— Proof #2 catches 1 window

Signal SCounter example 
for Proof #2

Counter example
for Proof #1

Clock
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Problem #3: Handshake Scheme

 

n bit 
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hold sample 

clk1 
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clk2 
(rx) 

synchronizer 
(clk1 to clk2) 

synchronizer 
(clk2 to clk1) 

data valid (req) 

data transfer 
acknowledge (ack) 

sequential 

logic cloud in 

clk2 domain 

sequential 

logic cloud 
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req

ack
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Handshake Check

� Checks necessary for handshake scheme

— Once signal req gets asserted, it remains asserted until signal 

ack is asserted

— Once signal ack gets asserted, it remains asserted until signal 

req gets deasserted

— Signal req doesn’t assert again until ack gets deasserted

— During the assertion of req and ack, the data has to remain 

stable

req

ack
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Assertion Logic Synthesis

� Protocols described above can be synthesized into 
assertion logic to be used by formal

— Static-timeframe check

— Dynamic-timeframe check

� Static timeframe check

— Difference between ending timeframe and starting 
timeframe is constant

� Dynamic timeframe check

— Difference between ending timeframe and starting 
timeframe is changing
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Examples

� Examples of static-timeframe checks

— Gray-code check

— Stability check

� Examples of Dynamic-timeframe checks

— Handshake
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Static-timeframe Assertion Synthesis

� For each signal in different timeframes, we add 

registers to represent the delay between 

timeframes

� Compare these delayed signals using 

combinational logic
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Synthesized Assertion for Gray-Coding Check

~ 

+ 

1 

~ 

& | 

Failure Signal 

Tx1      Tx2 

!(|(e & ~((~e)+ 1’b1)))==TRUE            (1)

In which e = Tx1 ^ Tx2

Tx1 & Tx2 are the values of the transmitting register for 2 consecutive 

timeframes
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Dynamic-timeframe Assertion Synthesis

� Transform the checks into NFA

� Transform the NFA into DFA

� Synthesize DFA into a circuit

NFA DFA Circuit

Synthesizing Dynamic-Timeframe Checker

Input Output
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NFA for handshake

� Once signal req gets asserted, it remains asserted 

until signal ack is asserted

S1 S2ack

req

Acceptance
From LHS
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DFA for handshake check

S1 S2ack

req & !ack

Acceptance
From LHS

S3

Failure

!req & !ack
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Traditional Formal Analysis

� Flow

— Perform static CDC analysis

— Collect all the assertions after CDC analysis

— Synthesizing all the assertions together with the 

design to form formal netlist

— Run formal algorithm

� Problems

— Capacity

— Performance
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Automatic Formal CDC Flow

� During CDC static analysis, create a local circuit 

for each CDC property at interest

� Keep bring in larger circuit until budget is used up 

or the property is proven

� Any unproven property will generate assertions to 

run for simulation
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Automatic Formal CDC Flow

ΩΩΩΩ : Flattened Netlist

B : CDC boundary

P : empty queue, will contain all the non-proven CDC boundaries

ββββ : CDC boundary

 1:    Formal_CDC (B, P) { 
2:      For_each_CDC_boundary(B, β) { 

3:          Proven = FALSE; 

4:          If (β needs to be verified) { 

5:                E = Extract_local_circuit_as_an_abstraction(β); 
6:                C = Create_formal_netlist(E); 

7:                Proven = Formal_verify(C); 

8:          } 
9:        If (Proven == FALSE)  

10:             insert(P, β); 
11:    } 

12:  } 

13: 
14:  CDC_Analysis(Ω) { 

15:      B =  Structure_analysis(Ω); 

16:      Formal_CDC(B, P); 

17:      Checker_promotion(P); 

18:   } 
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Experimental Results

Testcase Time  Proven Time Proven Total Size

testcase1 16 1 6 1 3 160

testcase2 21 5 9 5 8 176

testcase3 25 9 8 7 12 194

testcase4 89 5 13 1 7 302

testcase5 526 3 125 2 5 414

testcase6 51 6 14 1 8 315

testcase7 385 128 187 106 370 3554

testcase8 92 10 31 7 21 6997

testcase9 12509 48 2586 23 71 7648

testcase10 912 42 100 6 166 11286

Total 14626 257 3079 159 671 31046

P o st-C D C  F o rmal A uto  fo rmal C D C

20%20% 62%62%
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Conclusion

� Discussed various CDC protocols

� Proposed a fully automatic approach to formally 

verify CDC protocols at chip level

� Experiments showed our new approach can prove 

a large portion of the assertions in a much shorter

time


