Improving Scalability of Model-Checking
for Minimizing Buffer Requirements of
Synchronous Dataflow Graphs

Nan Guan?, Zonghua Gu?, Wang Yi3, Ge Yul

INortheastern University, China

2Hong Kong University of Science and Technology, China

3Uppsala University, Swenden

ASP-DAC'09 January 18-22, 2009

Outline

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’0!

Outline

© Overview

Overview
Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09 -3-

Overview
Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

Overview

m Synchronous dataflow (SDF)
e Also called Statically-Schedulable Dataflow (SSDF)
e Widely used in multimedia, signal processing, etc.
e Each actor invocation consumes and produces a constant
number of data tokens.

Overview
Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

Overview

m Synchronous dataflow (SDF)
e Also called Statically-Schedulable Dataflow (SSDF)
e Widely used in multimedia, signal processing, etc.
e Each actor invocation consumes and produces a constant
number of data tokens.
m Buffer Size minimization

e Memory is a scare resource in embedded systems
o NP-complete

Overview
Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

Overview

m Synchronous dataflow (SDF)
e Also called Statically-Schedulable Dataflow (SSDF)
e Widely used in multimedia, signal processing, etc.
e Each actor invocation consumes and produces a constant
number of data tokens.
m Buffer Size minimization
e Memory is a scare resource in embedded systems
o NP-complete
m Model-checking (MC)

e pro: obtain provably-optimal solution
e con: state space explosion limits scalability

Overview
Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

Overview

Synchronous dataflow (SDF)
e Also called Statically-Schedulable Dataflow (SSDF)
e Widely used in multimedia, signal processing, etc.
e Each actor invocation consumes and produces a constant
number of data tokens.
Buffer Size minimization

e Memory is a scare resource in embedded systems
o NP-complete

Model-checking (MC)

e pro: obtain provably-optimal solution

e con: state space explosion limits scalability
Contribution: improve MC scalability by exploiting
SDF-specific properties

Outline

Overview

© Introduction

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09 -5-

Introduction to SDF

a SDF example

Overview

02 3 @ 1 2
Introduction €1 [59] e

Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09 -6 -

Introduction to SDF

a SDF example

Overview

02 3 @ 1 2
Introduction €1 [59] e

Improving
MC .
Scalability Balance Equations:

Performance

m for each edge e: rge X p(€) = rsnk X c(e€)

Conclusions

ASP-DAC’09 -6 -

Introduction to SDF

a SDF example

Overview

02 3 @ 1 2
Introduction €1 [59] e

Improving
MC .
Scalability Balance Equations:

Performance

m for each edge e: rge X p(€) = rsnk X c(e€)
Conclusions

For this example:

ASP-DAC’09 -6 -

Introduction to SDF

a SDF example

Overview

02 3 @ 1 2
Introduction €1 [59] e

Improving
MC .
Scalability Balance Equations:

Performance

m for each edge e: rge X p(€) = rsnk X c(e€)
Conclusions

For this example:

BraX1l=rcx3, rax2=rgx3, rgXl=rcx2

ASP-DAC’09 -6 -

Introduction to SDF

a SDF example

Overview

02 3 @ 1 2
Introduction €1 [59] e

Improving
MC .
Scalability Balance Equations:

Performance

m for each edge e: rge X p(€) = rsnk X c(e€)
Conclusions .
For this example:
BraX1l=rcx3, rax2=rgx3, rgXl=rcx2

m solution (repetition vector): ra=3,rg =2,rc =1

ASP-DAC’09 -6 -

Introduction to SDF

a SDF example

Overview
02 3 @ 1 2
Introduction €1 [59] e

Improving
MC .
Scalability Balance Equations:

Ferformance m for each edge e: rge X p(€) = rsnk X c(e€)
Conclusions .
For this example:
BraX1l=rcx3, rax2=rgx3, rgXl=rcx2
m solution (repetition vector): ra=3,rg =2,rc =1
m any legal schedule must contain 3 firings of A, 2 firings of
B and 1 firing of C

ASP-DAC’09 -6 -

Introduction to SDF

a SDF example

Overview

02 3 @ 1 2
Introduction €1 [59] e

Improving
MC .
Scalability Balance Equations:

Performance

m for each edge e: rge X p(€) = rsnk X c(e€)

Conclusions .

For this example:
BraX1l=rcx3, rax2=rgx3, rgXl=rcx2
m solution (repetition vector): ra=3,rg =2,rc =1

m any legal schedule must contain 3 firings of A, 2 firings of
B and 1 firing of C

m possible schedules: AAABBC, AABABC

ASP-DAC’09 -6 -

SDF Scheduling and Edge Buffer Sizes

Overview
sl:

Introduction

Improving

L QQ 3 @ 1 2 e
Scalability €1 €2

Performance

Conclusions

ASP-DAC’09 -7-

SDF Scheduling and Edge Buffer Sizes

Overview Sl: A

Introduction
:\r)ll(;:)roving 2 %0 3 g 1 :; e
Scalability €1 €2

Performance

Conclusions

ASP-DAC’09 -7-

SDF Scheduling and Edge Buffer Sizes

Overview Sl: A A

Introduction
:\.)I]groving QMM@
Scalability el e2

Performance

Conclusions

ASP-DAC’09 -7-

Overview

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

SDF Scheduling and Edge Buffer Sizes

sl: AAA

QQ se0000 3, @ L = _2,0

SDF Scheduling and Edge Buffer Sizes

Overview 51: A A A B

Introduction
:\7'1gr'oving e 2 200 3 1 [e
Scalability €1 €2

Performance

Conclusions

ASP-DAC’09 -7-

Overview

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

SDF Scheduling and Edge Buffer Sizes

sl: AAABB

*—0—=-30

Overview

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

SDF Scheduling and Edge Buffer Sizes

sl: AAABBC

*—0——30

SDF Scheduling and Edge Buffer Sizes

Overvien sl: AAABBC AAABBC - -

Introduction

Improving

Imp @2 3 @ 1 ge
Scalability €1 €2

Performance Max Req= 6 Max Req=2

Conclusions

ASP-DAC’09 -7-

SDF Scheduling and Edge Buffer Sizes

Overvien sl: AAABBC AAABBC - -

Introduction

Improving

L QQ 3 @ 1 2 e
Scalability €1 €2

Performance Max Req= 6 Max Req=2

Conclusions

Total Required Buffer Size: 6 +2 =8

We assume that each edge has its dedicated buffer space in this paper,
instead of a global shared buffer space for all edges

ASP-DAC’09 -7-

Overview

Introduction o
s2:

Improving
MC

Scalability QQ 3 @ 1 _2)0
€1 (=]

Performance

Conclusions

SDF Scheduling and Edge Buffer Sizes ...

ASP-DAC’09 -8-

Overview

Introducti o
ntroduction s2: A
Improving

MC

Scalability 2 o0 3 @ 1 _2)0
€1 €

Performance

Conclusions

SDF Scheduling and Edge Buffer Sizes ...

ASP-DAC’09 -8-

Overview

Introduction s2: AA
Improving
MC

Scalability QQ 2000 3 @ 1 ge
€1 €2

Performance

Conclusions

SDF Scheduling and Edge Buffer Sizes ...

ASP-DAC’09 -8-

Overview

Introduction 52: A A B
Improving
MC

Scalability Q 2) 3 1) e
€1 €

Performance

Conclusions

SDF Scheduling and Edge Buffer Sizes ...

ASP-DAC’09 -8-

Overview

Introduction 52: A A B A
Improving
MC

Scalability Q 2 200 3 1) e
€1 €

Performance

Conclusions

SDF Scheduling and Edge Buffer Sizes ...

ASP-DAC’09 -8-

Overview

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

SDF Scheduling and Edge Buffer Sizes ...

s2: AABAB

Q*—>0—=-30

Overview

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

SDF Scheduling and Edge Buffer Sizes ...

s2: AABABC

Q*—>0——30

Overview

Introduction s2: AABABC AABABC
Improving
MC

Scalability QQ 3 @ 1 _2)0
€1 €

Performance

Conclusions Max Req= 4 Max Req=2

SDF Scheduling and Edge Buffer Sizes ...

ASP-DAC’09 -8-

Overview

Introduction s2: AABABC AABABC
Improving
MC

Scalability QQ 3 @ 1 _2)0
€1 €

Performance

Conclusions Max Req= 4 Max Req=2

SDF Scheduling and Edge Buffer Sizes ...

Total Required Buffer Size: 442 =6

ASP-DAC’09 -8-

State Space Representation

*——30+—=—0

Overview
Introduction st A A A B B C
Improving
MC
Scalability €1
—>
Performance /ﬂ\/ﬂ—\ﬂ\
Conclusions i o o
62l
° @ o ° 9 9
(] o o) o o
o (] o o) o -]

ASP-DAC’09 -9-

State Space Representation ...

Q——>*0—0
Overview

Introduction Sy AABAB C
Improving

MC

Scalability &1

Performance /ﬂ\ O/ﬂ_\
[(] ()

Conclusions

ASP-DAC’09 -10 -

Overview

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

Using MC to Find Minimal Buffer Size

System Model

~>

T

Model-Checker
(SPIN,NuSMV)

>

- 11 -

False + Counter
Example (schedule)

Overview
Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

Using MC to Find Minimal Buffer Size

System Model

~>

m Verification Claim: Linear Temporal Logic (LTL) formula

(for SPIN):

Model-Checker
(SPIN,NuSMV)

T

>

- 11 -

False + Counter
Example (schedule)

Overview

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

Using MC to Find Minimal Buffer Size

System Model

~>

m Verification Claim: Linear Temporal Logic (LTL) formula

(for SPIN):

Model-Checker
(SPIN,NuSMV)

T

>

e <> BufReq > BOUND

e "All possible schedules will eventually lead to a state
where the total buffer size requirement is larger than or
equal to a user-specified bound."

- 11 -

False + Counter
Example (schedule)

Overview

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

Using MC to Find Minimal Buffer Size

System Model

~>

m Verification Claim: Linear Temporal Logic (LTL) formula

(for SPIN):

Model-Checker
(SPIN,NuSMV)

>

e <> BufReq > BOUND

e "All possible schedules will eventually lead to a state
where the total buffer size requirement is larger than or
equal to a user-specified bound."

T

False + Counter
Example (schedule)

m If proven False, then a feasible schedule has been found
with buffer size requirement BufReq < BOUND.

- 11 -

Overview

Introduction
Improving
MC
Scalability

Performance

Conclusions

ASP-DAC’09

Using MC to Find Minimal Buffer Size

> Model-Checker

(SPIN,NuSMV) [~

System Model /

False + Counter
Example (schedule)

m Verification Claim: Linear Temporal Logic (LTL) formula

(for SPIN):
e <> BufReq > BOUND

e "All possible schedules will eventually lead to a state
where the total buffer size requirement is larger than or

equal to a user-specified bound."

m If proven False, then a feasible schedule has been found
with buffer size requirement BufReq < BOUND.

m Set BOUND = BufReq and run MC.

BOUND is reduced

iteratively until the LTL formula is proven True.

11 -

Outline

Overview

Introduction

Improving

MC © Improving MC Scalability

Scalability L. .
Firing Count @ Firing Count Restriction

Restriction

IEhtad s o Tighter Edge Buffer Size Upper Bounds
Bobnds @ Technique 1

wnfimn s @ Technique 2

Technique 2
S Pen @ Graph Decomposition

Performance

Conclusions

ASP-DAC’09 12 -

Rationale Behind the Techniques

m Firing Count Restriction

Overview

e e helps reduce system state space

Improving m Tighter Edge Buffer Size Upper Bounds (UB)

MC
Scalability e helps reduce system state space

Firing Count

Restriction e also helps reduce the number of model-checker

Tighter Ed
3ufref's,azege invocations in the iterative procedure to obtain the
PPer.

Bounds minimum buffer size requirement
Technique 1

Technique 2 H
e m Graph Decomposition

composition

e use divide-and-conquer to decompose a large problem into
multiple smaller sub-problems for certain SDF graphs with
a special topology

Performance

Conclusions

ASP-DAC’09 - 13-

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09

Firing Count Restriction

°

€1
—
o o o))
o o [+ o)]
o o o o)]
o o o o o
14 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09

Firing Count Restriction

m If a SDF graph has a schedule with bounded memory
requirement, it must have a periodic schedule where each
actor firing count is equal to its firing count in the
repetition vector [Lee’87].

m To help reduce MC state space, we restrict each actor’s
firing count to not exceed its entry in the repetition vector

Edward A. Lee, David G. Messerschmitt: Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing. |EEE
Trans. Computers 36(1): 24-35 (1987)

- 15 -

Tighter Upper Bounds — Technique 1

i p\€ cle @
Overview
I d(e

Introduction

Improving .
Scalabiiy A Naive Upper Bound (UB):

Resticsion’”

It UB(e) = p(e) x rsc(€) +d(e)

Upper
Bounds

Technique 1

Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09 16

Overview
Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2
Graph De-

composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 1

p(e - ceg

A Naive Upper Bound (UB):

“This upper bound is too loose!”

-16 -

Tighter Upper Bounds — Technique 1 ...

m Given a known feasible schedule s with total buffer
requirement R(s):

Overview UB(e,) S R(S) — Z LB(eJ)

Introduction &j#€;

Improving
MC

Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2

Graph De-
composition

Performance

Conclusions

ASP-DAC’09 - 17 -

Overview
Introduction

Improving
MC
Scalability
Firing Count
Restriction
Tighter Edge
Buffer Size
e
Bounds

Technique 1

Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 1 ...

m Given a known feasible schedule s with total buffer
requirement R(s):
UB(ei) < R(s)— Y LB(ej)

&j#€;

m A heuristic algorithm [Bh'96] can be used to obtain a
feasible schedule s.
e Optimal for acyclic, delayless SDF graphs, but not for
general SDF graphs.

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from
Dataflow Graphs, Kluewer Academic Publishers, 1996 J

-17 -

Overview
Introduction

Improving
MC
Scalability
Firing Count
Restriction
Tighter Edge
Buffer Size
e
Bounds

Technique 1

Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 1

m Given a known feasible schedule s with total buffer
requirement R(s):

UB(&) <R(s)— Y LB(ej)

&j#€;

m A heuristic algorithm [Bh'96] can be used to obtain a
feasible schedule s.
e Optimal for acyclic, delayless SDF graphs, but not for
general SDF graphs.

m Edge buffer lower bound (LB) can be obtained [Bh'96]:

LB — d d>p+c—g
" | p+c—g+dmodg otherwise

g = gcd(p,¢)

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from
Dataflow Graphs, Kluewer Academic Publishers, 1996

J

-17 -

Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8

Introduction q €3 ’1
oving el

Improving (59)

MC 2 2

Scalability

Firing Count
Restriction

Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2
Graph De-

composition

Performance

Conclusions

ASP-DAC’09 - 18 -

Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8

Introduction q €3 ’1
oving el

Improving (59)

MC 2 2

Scalability

FHR @t
Restriction
Tighter Edge

Buffer Size ms;: CCAAB
g

Bounds

Technique 1
Technique 2

Graph De-
composition

Performance

Conclusions

ASP-DAC’09 - 18 -

Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8

Introduction q €3 ’1
oving el

Improving (59)

MC 2 2

Scalability

Firing Count
Restriction

ighter Ed
Butfor Sizes" ms;: CCAAB
g

= e R(s))=2 42 +16 =20

Technique 1
Technique 2

Graph De-
composition

Performance

Conclusions

ASP-DAC’09 - 18 -

Overview
Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2
Graph De-

composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 2:
Heavy Edges

QS < 8>1

ms;: CCAAB
e R(s1)=2+ +2 - 416/~ =20
e s is unadvisable, since e; is a "heavy edge", and we
should avoid accumulating tokens on it

- 18 -

Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8

Introduction q €3 ’1
oving el

Improving (59)

MC 2 2

Scalability

Firing Count

Restriction

Tighter Edge
Buffar Size. H S CCAAB

Upper

= e R(s))=2 42 +16 =20

Technique 1

Technique 2 H H H H n n
o e s is unadvisable, since e; is a "heavy edge", and we

S should avoid accumulating tokens on it
Performance
ms: CACAB

Conclusions

ASP-DAC’09 - 18 -

Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8
Introduction q €3 '1

o el

Improving [=))
e 2 2
Scalability
Firing Count
Restriction
Tighter Edge
PuflalS ms;: CCAAB
Bounds
Technique 1 L4 R(sl) - 2 + 2 + 16 ES 20
Technique 2 H H H H n n
Graph Do e s; is unadvisable, since e3 is a heavy.edge , and we
compesition should avoid accumulating tokens on it
Performance

i ms: CACAB
Conclusions

e R()=2 " +2 +8 =12

ASP-DAC’09 - 18 -

Tighter Upper Bounds — Technique 2:
Heavy Edges ...

Overview

Introduction

Improving
MC
Scalability

Eiring Count
Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’ -19 -

Tighter Upper Bounds — Technique 2:
Heavy Edges ...

Forward Heavy Edge (FHE) —— ¢ >p1+p2+ ...+ pn

Overview c

\4

Introduction

Improving
MC
Scalability

Eiring Count
Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09 -19 -

Overview

Introduction

Improving
MC
Scalability

Eiring Count
Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 2:

Heavy Edges ...

Forward Heavy Edge (FHE) —— ¢ >p1+p2+ ...+ pn

ey

-19 -

Tighter Upper Bounds — Technique 2:

Heavy Edges ...
Forward Heavy Edge (FHE) —— ¢ >p1+p2+ ...+ pn

Overview

Introduction

Improving

Technique 1
Technique 2

Graph De-
composition

Performance
Regular Heavy Edge (RHE)
A FHE where p(e) and d(e) are integer multiples of c(e), or

A BHE where c(e) and d(e) are integer multiples of p(e)

-19 -

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 2:
Heavy Edges

Upper Bounds for Heavy Edges:

Overview
Introduction
Improving

MC
Scalability

Firing Count

Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09 - 20 -

Overview
Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2
Graph De-

composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 2:
Heavy Edges

Upper Bounds for Heavy Edges:
m If e is an FHE, we can set UB of ¢f as

max(p(er) +c(er),d(er)) + c(er)

-20 -

Overview

Introduction

Improving

MC
Scalability
Eiring Count
Restriction
Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2
Graph De-

composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 2:
Heavy Edges

Upper Bounds for Heavy Edges:
m If e is an FHE, we can set UB of ¢f as

max(p(er) +c(er),d(er)) + c(er)

m If e, is an BHE, we can set UB of ¢, as

max(p(ep) + c(es), d(eb)) + p(ep)

-20 -

Tighter Upper Bounds — Technique 2:
Heavy Edges

Upper Bounds for Heavy Edges:
Overview m If er is an FHE, we can set UB of ¢r as

Introduction

improving max(p(er) + c(er),d(ef)) + c(er)
Scalability

Firing Count
Restriction

Tighter Edge .
Buffer Size m If e, is an BHE, we can set UB of ¢, as

g
Bounds

Technique 1

e max(p(ep) +c(ep),d(es)) + p(es)

composition
Performance

Conclusions

m If ¢ is an RHE, we can set the upper bound of e, as
LB(er)

ASP-DAC’09 -20-

Overview

Introduction

Improving
MC
Scalability

Eiring Count
Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 2:

Heavy Edges

€AB €BC €CE €BD €ED €DA

Naive UB 30 12 6 12 30 60

Improved UB | 16 2 6 12 5 32
921 -

Overview
Introduction

Improving
MC

Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2
Graph De-

composition

Performance

Conclusions

ASP-DAC’09

Graph Decomposition

Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the
graph will become two separate subgraphs.

-22 -

Overview
Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2
Graph De-

composition

Performance

Conclusions

ASP-DAC’09

Graph Decomposition

Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the
graph will become two separate subgraphs.

1®>@ @<°2

-22 -

Graph Decomposition

Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the
Overview graph will become two separate subgraphs.

Introduction

Improving

MC

Scalability G G2
FHR @t

Restriction

Tighter Edge

Buffer Size

g

Bounds

Technique 1

Technique 2

Graph De-
composition

v

Fetiaems m Given known optimal schedules s; and s, for subgraphs G;
ol and G, , we can get an optimal schedule s of G by

ASP-DAC’09 -22-

Graph Decomposition

Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the
Overview graph will become two separate subgraphs.

Introduction

Improving

MC

Scalability G G2
FHR @t

Restriction

Tighter Edge

Buffer Size

g

Bounds

Technique 1

Technique 2

Graph De-
composition

Fetiaems m Given known optimal schedules s; and s, for subgraphs G;

ol and G, , we can get an optimal schedule s of G by

e firing each node by following the known optimal schedules
s1 and s, and

e firing the sink of the bridge e, as soon as possible

v

ASP-DAC’09 -22-

Graph Decomposition

Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the
Overview graph will become two separate subgraphs.

Introduction

Improving

MC

Scalability G G2
FHR @t

Restriction

Tighter Edge

Buffer Size

g

Bounds

Technique 1

Technique 2

Graph De-
composition

v

Fetiaems m Given known optimal schedules s; and s, for subgraphs G;

ol and G, , we can get an optimal schedule s of G by

e firing each node by following the known optimal schedules
s1 and s, and

e firing the sink of the bridge e, as soon as possible

B Ropt(G) = Ropt(G1) + Ropt (G2) + LB(ep)

ASP-DAC’09 -22-

Outline

Overview
Introduction
Improving

MC
Scalability

Performance

Conclusions

@ Performance

ASP-DAC’09 -23-

Performance

Overview
Introduction
Improving

MC
Scalability

Performance

Conclusions

ASP-DAC’09 - 24 -

Performance

m Use SDF3 [Gelein'06], to generate random SDF graphs

Overview
Introduction
Improving

MC
Scalability

Performance

Conclusions

M. Geilen, S. Stuijk and T. Basten. SDF3: SDF for free. ACSD 2006. J

ASP-DAC’09 - 24 -

Performance

m Compare the state space
Overview optimizations
Introduction

Improving

MC

Scalability

Performance

Conclusions

M. Geilen, S. Stuijk and T. Basten

m Use SDF3 [Gelein'06], to generate random SDF graphs

size with and without our

. SDF3: SDF for free. ACSD 2006.

J

ASP-DAC’09

- 24 -

Performance

m Use SDF3 [Gelein'06], to generate random SDF graphs
m Compare the state space size with and without our
optimizations

Overview
Introduction

:\v/Tllgroving Experiment 1 2 3 4 5 6 7 8
Scalability Number of Actors | 4 6 8 10 12 14 16 18
Number of States with the original approach in [Gelein'05]
BOUND-1 (MB) 2 2 2 2 2 2 7064 26394
BOUND (MB) 13 88 115 452 193 195 216 18341
Number of States with the optimized approach in this paper
BOUND-1 (s) 2 2 2 2 2 2 1244 11111

BOUND (s) 13 64 82 114 112 92 91 4120

Performance

Conclusions

M. Geilen, S. Stuijk and T. Basten. SDF3: SDF for free. ACSD 2006. J

M. Geilen, T. Basten and S. Stuijk: Minimizing buffer requirements of
synchronous dataflow graphs with model checking. DAC 2005. J

ASP-DAC’09 - 24 -

Outline

Overview
Introduction
Improving
MC
Scalability

Performance

Conclusions

© Conclusions

ASP-DAC’09 -25-

Conclusions

Overview

m Presented a set of techniques for improving MC efficiency

Introduction

—— e Actor firing count restriction
mMc e Tighter upper bounds for edge buffer size
Scalability e

e Graph decomposition

Performance

Conclusions

m Performance evaluation shows their effectiveness in
reducing state space

ASP-DAC’09 - 26 -

	Overview
	Introduction
	Improving MC Scalability
	Firing Count Restriction
	Tighter Edge Buffer Size Upper Bounds
	Graph Decomposition

	Performance
	Conclusions

