Improving Scalability of Model-Checking for Minimizing Buffer Requirements of Synchronous Dataflow Graphs

Nan Guan1, Zonghua Gu2, Wang Yi3, Ge Yu1

1Northeastern University, China
2Hong Kong University of Science and Technology, China
3Uppsala University, Sweden

ASP–DAC’09 January 18–22, 2009
Outline

1 Overview

2 Introduction

3 Improving MC Scalability
 - Firing Count Restriction
 - Tighter Edge Buffer Size Upper Bounds
 - Technique 1
 - Technique 2
 - Graph Decomposition

4 Performance

5 Conclusions
Overview

- Synchronous dataflow (SDF)
 - Also called Statically-Schedulable Dataflow (SSDF)
 - Widely used in multimedia, signal processing, etc.
 - Each actor invocation consumes and produces a constant number of data tokens.

- Buffer Size minimization
 - Memory is a scare resource in embedded systems
 - NP-complete

- Model-checking (MC)
 - pro: obtain provably-optimal solution
 - con: state space explosion limits scalability

- Contribution: improve MC scalability by exploiting SDF-specific properties
Overview

■ Synchronous dataflow (SDF)
 • Also called Statically-Schedulable Dataflow (SSDF)
 • Widely used in multimedia, signal processing, etc.
 • Each actor invocation consumes and produces a constant number of data tokens.

■ Buffer Size minimization
 • Memory is a scarce resource in embedded systems
 • NP-complete

■ Model-checking (MC)
 • pro: obtain provably-optimal solution
 • con: state space explosion limits scalability

■ Contribution: improve MC scalability by exploiting SDF-specific properties
Overview

- Synchronous dataflow (SDF)
 - Also called Statically-Schedulable Dataflow (SSDF)
 - Widely used in multimedia, signal processing, etc.
 - Each actor invocation consumes and produces a constant number of data tokens.

- Buffer Size minimization
 - Memory is a scarce resource in embedded systems
 - NP-complete

- Model-checking (MC)
 - pro: obtain provably-optimal solution
 - con: state space explosion limits scalability

Contribution: improve MC scalability by exploiting SDF-specific properties
Overview

- Synchronous dataflow (SDF)
 - Also called Statically-Schedulable Dataflow (SSDF)
 - Widely used in multimedia, signal processing, etc.
 - Each actor invocation consumes and produces a constant number of data tokens.

- Buffer Size minimization
 - Memory is a scarce resource in embedded systems
 - NP-complete

- Model-checking (MC)
 - pro: obtain provably-optimal solution
 - con: state space explosion limits scalability

- Contribution: improve MC scalability by exploiting SDF-specific properties
Outline

1 Overview

2 Introduction

3 Improving MC Scalability
 • Firing Count Restriction
 • Tighter Edge Buffer Size Upper Bounds
 • Technique 1
 • Technique 2
 • Graph Decomposition

4 Performance

5 Conclusions
Introduction to SDF

Balance Equations:
- for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:
- $r_A \times 1 = r_C \times 3$, $r_A \times 2 = r_B \times 3$, $r_B \times 1 = r_C \times 2$
- solution (repetition vector): $r_A = 3$, $r_B = 2$, $r_C = 1$
- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC
Introduction to SDF

a SDF example

Balance Equations:

- for each edge e: $r_{\text{src}} \times p(e) = r_{\text{snk}} \times c(e)$

For this example:

- $r_A \times 1 = r_C \times 3$, $r_A \times 2 = r_B \times 3$, $r_B \times 1 = r_C \times 2$
- solution (repetition vector): $r_A = 3$, $r_B = 2$, $r_C = 1$
- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC
Introduction to SDF

a SDF example

Balance Equations:
- for each edge \(e \): \(r_{\text{src}} \times p(e) = r_{\text{snk}} \times c(e) \)

For this example:
- \(r_A \times 1 = r_C \times 3 \), \(r_A \times 2 = r_B \times 3 \), \(r_B \times 1 = r_C \times 2 \)
- solution (repetition vector): \(r_A = 3, r_B = 2, r_C = 1 \)
- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC
Introduction to SDF

Balance Equations:

- for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:

- $r_A \times 1 = r_C \times 3$, $r_A \times 2 = r_B \times 3$, $r_B \times 1 = r_C \times 2$

- solution (repetition vector): $r_A = 3, r_B = 2, r_C = 1$

- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C

- possible schedules: AAABBC, AABABC
Introduction to SDF

Balance Equations:
- for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:
- $r_A \times 1 = r_C \times 3$, $r_A \times 2 = r_B \times 3$, $r_B \times 1 = r_C \times 2$
- solution (repetition vector): $r_A = 3$, $r_B = 2$, $r_C = 1$
- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC
Balance Equations:

- for each edge e: \[r_{\text{src}} \times p(e) = r_{\text{snk}} \times c(e) \]

For this example:

- $r_A \times 1 = r_C \times 3$, \quad $r_A \times 2 = r_B \times 3$, \quad $r_B \times 1 = r_C \times 2$
- solution (repetition vector): $r_A = 3$, $r_B = 2$, $r_C = 1$
- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C

possible schedules: AAABBC, AABABC
Introduction to SDF

Balance Equations:

- for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:

- $r_A \times 1 = r_C \times 3$, $r_A \times 2 = r_B \times 3$, $r_B \times 1 = r_C \times 2$
- solution (repetition vector): $r_A = 3, r_B = 2, r_C = 1$
- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC
Total Required Buffer Size: $6 + 2 = 8$

We assume that each edge has its dedicated buffer space in this paper, instead of a global shared buffer space for all edges.
SDF Scheduling and Edge Buffer Sizes

We assume that each edge has its dedicated buffer space in this paper, instead of a global shared buffer space for all edges.

Total Required Buffer Size: $6 + 2 = 8$
SDF Scheduling and Edge Buffer Sizes

s1: AA ABBC AAABBC

Max Req. = 6 Max Req. = 2

Total Required Buffer Size: 6 + 2 = 8

We assume that each edge has its dedicated buffer space in this paper, instead of a global shared buffer space for all edges.
SDF Scheduling and Edge Buffer Sizes

\[s1: \text{AAA} \quad \text{BBC} \quad \text{AAABBBC} \ldots \ldots \]

Max Req. = 6 Max Req. = 2

Total Required Buffer Size: 6 + 2 = 8

We assume that each edge has its dedicated buffer space in this paper, instead of a global shared buffer space for all edges.
SDF Scheduling and Edge Buffer Sizes

s1: AAAB

Max Req. = 6

Max Req. = 2

Total Required Buffer Size: $6 + 2 = 8$

We assume that each edge has its dedicated buffer space in this paper, instead of a global shared buffer space for all edges.
SDF Scheduling and Edge Buffer Sizes

Total Required Buffer Size: $6 + 2 = 8$

We assume that each edge has its dedicated buffer space in this paper, instead of a global shared buffer space for all edges.
SDF Scheduling and Edge Buffer Sizes

s1: AAABBC AAABBC ...

Max Req. = 6 Max Req. = 2

Total Required Buffer Size: 6 + 2 = 8

We assume that each edge has its dedicated buffer space in this paper, instead of a global shared buffer space for all edges.
SDF Scheduling and Edge Buffer Sizes

s1: AAABBC AAABBC

Max Req. = 6 Max Req. = 2

Total Required Buffer Size: 6 + 2 = 8

We assume that each edge has its dedicated buffer space in this paper, instead of a global shared buffer space for all edges.
SDF Scheduling and Edge Buffer Sizes

s1: AAABBC AAABBC

Max Req. = 6
Max Req. = 2

Total Required Buffer Size: 6 + 2 = 8

We assume that each edge has its dedicated buffer space in this paper, instead of a global shared buffer space for all edges.
SDF Scheduling and Edge Buffer Sizes ...

s2: A A B A B C A A B A B C ...

Max Req. = 4 Max Req. = 2

Total Required Buffer Size: 4 + 2 = 6
SDF Scheduling and Edge Buffer Sizes ...

s2: A A B A B C A A B A B C ...

Max Req. = 4 Max Req. = 2

Total Required Buffer Size: 4 + 2 = 6
SDF Scheduling and Edge Buffer Sizes ...

s2: A A B A B C A A B A B C

\[\begin{align*}
\text{Max Req.} &= 4 \\
\text{Max Req.} &= 2 \\
\text{Total Required Buffer Size}: 4 + 2 &= 6
\end{align*} \]
SDF Scheduling and Edge Buffer Sizes ...

s2: AAB ABC AABABC ...

Max Req. = 4 Max Req. = 2

Total Required Buffer Size: 4 + 2 = 6
SDF Scheduling and Edge Buffer Sizes ...

s2: AABA

Max Req. = 4

Total Required Buffer Size: 4 + 2 = 6
SDF Scheduling and Edge Buffer Sizes ...

s2: A A B A B C A A B A B C

A \rightarrow B \rightarrow C

\text{Max Req.} = 4 \quad \text{Max Req.} = 2

Total Required Buffer Size: 4 + 2 = 6
SDF Scheduling and Edge Buffer Sizes ...
SDF Scheduling and Edge Buffer Sizes ...

s2: AABABC AABABC

Max Req. = 4 Max Req. = 2

Total Required Buffer Size: 4 + 2 = 6
SDF Scheduling and Edge Buffer Sizes...

s2: A A B A B C A A B A B C

A \[e_1 \] 3 \[e_2 \] B 1 \[e_2 \] C

Max Req. = 4

Total Required Buffer Size: 4 + 2 = 6
State Space Representation

\[s_1: \text{A A A B B C} \]
State Space Representation ...
Using MC to Find Minimal Buffer Size

Verification Claim: Linear Temporal Logic (LTL) formula (for SPIN):
- \(<> \text{BufReq} \geq \text{BOUND} \)
- "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."

If proven False, then a feasible schedule has been found with buffer size requirement \(\text{BufReq} < \text{BOUND} \).
Set \(\text{BOUND} = \text{BufReq} \) and run MC. \(\text{BOUND} \) is reduced iteratively until the LTL formula is proven True.
Using MC to Find Minimal Buffer Size

- Verification Claim: Linear Temporal Logic (LTL) formula (for SPIN):
 - $<> \text{BufReq} \geq \text{BOUND}$
 - "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."

- If proven False, then a feasible schedule has been found with buffer size requirement $\text{BufReq} < \text{BOUND}$.

- Set $\text{BOUND} = \text{BufReq}$ and run MC. BOUND is reduced iteratively until the LTL formula is proven True.
Verification Claim: Linear Temporal Logic (LTL) formula (for SPIN):

- \(<> \text{BufReq} \geq \text{BOUND} \)
- "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."

If proven False, then a feasible schedule has been found with buffer size requirement \(\text{BufReq} < \text{BOUND} \).

Set \(\text{BOUND} = \text{BufReq} \) and run MC. \(\text{BOUND} \) is reduced iteratively until the LTL formula is proven True.
Using MC to Find Minimal Buffer Size

- System Model
- TL Spec
- Model-Checker (SPIN, NuSMV)
- True
- False + Counter Example (schedule)

Verification Claim: Linear Temporal Logic (LTL) formula (for SPIN):
- \(<> \text{BufReq} \geq BOUND\)
- "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."

If proven False, then a feasible schedule has been found with buffer size requirement \(\text{BufReq} < BOUND\).

Set \(BOUND = \text{BufReq}\) and run MC. \(BOUND\) is reduced iteratively until the LTL formula is proven True.
Using MC to Find Minimal Buffer Size

- **System Model**
- **TL Spec**
- **Model-Checker (SPIN, NuSMV)**
- **True**
- **False + Counter Example (schedule)**

- **Verification Claim**: Linear Temporal Logic (LTL) formula (for SPIN):
 - $<> \text{BufReq} \geq \text{BOUND}$
 - "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."

- If proven **False**, then a feasible schedule has been found with buffer size requirement $\text{BufReq} < \text{BOUND}$.

- Set $\text{BOUND} = \text{BufReq}$ and run MC. BOUND is reduced iteratively until the LTL formula is proven **True**.
Outline

1 Overview

2 Introduction

3 Improving MC Scalability
 - Firing Count Restriction
 - Tighter Edge Buffer Size Upper Bounds
 - Technique 1
 - Technique 2
 - Graph Decomposition

4 Performance

5 Conclusions
Rationale Behind the Techniques

- **Firing Count Restriction**
 - helps reduce system state space

- **Tighter Edge Buffer Size Upper Bounds (UB)**
 - helps reduce system state space
 - also helps reduce the number of model-checker invocations in the iterative procedure to obtain the minimum buffer size requirement

- **Graph Decomposition**
 - use divide-and-conquer to decompose a large problem into multiple smaller sub-problems for certain SDF graphs with a special topology
Firing Count Restriction

Overview

Introduction

Improving MC Scalability

Firing Count Restriction

Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Performance

Conclusions
Firing Count Restriction ...

- If a SDF graph has a schedule with bounded memory requirement, it must have a periodic schedule where each actor firing count is equal to its firing count in the repetition vector [Lee’87].

- To help reduce MC state space, we restrict each actor’s firing count to not exceed its entry in the repetition vector.

Tighter Upper Bounds – Technique 1

A Naive Upper Bound (UB):

\[UB(e) = p(e) \times r_{src}(e) + d(e) \]

“This upper bound is too loose!”
Tighter Upper Bounds – Technique 1

A Naive Upper Bound (UB):

\[UB(e) = p(e) \times r_{src}(e) + d(e) \]

“This upper bound is too loose!”
Tighter Upper Bounds – Technique 1 ...

- Given a known feasible schedule s with total buffer requirement $R(s)$:
 \[UB(e_i) \leq R(s) - \sum_{e_j \neq e_i} LB(e_j) \]

- A heuristic algorithm [Bh’96] can be used to obtain a feasible schedule s.
 - Optimal for acyclic, delayless SDF graphs, but not for general SDF graphs.

- Edge buffer lower bound (LB) can be obtained [Bh’96]:
 \[LB = \begin{cases}
 d & d > p + c - g \\
 p + c - g + d \mod g & \text{otherwise}
 \end{cases} \]
 \[g = \gcd(p, c) \]

Tighter Upper Bounds – Technique 1 ...

- Given a known feasible schedule \(s \) with total buffer requirement \(R(s) \):

\[
UB(e_i) \leq R(s) - \sum_{e_j \neq e_i} LB(e_j)
\]

- A heuristic algorithm [Bh’96] can be used to obtain a feasible schedule \(s \).
 - Optimal for acyclic, delayless SDF graphs, but not for general SDF graphs.

- Edge buffer lower bound (\(LB \)) can be obtained [Bh’96]:

\[
LB = \begin{cases}
 d & \text{if } d > p + c - g \\
 p + c - g + d \mod g & \text{otherwise}
\end{cases}
\]

\[
g = \gcd(p, c)
\]

Tighter Upper Bounds – Technique 1 ...

- Given a known feasible schedule \(s \) with total buffer requirement \(R(s) \):
 \[
 UB(e_i) \leq R(s) - \sum_{e_j \neq e_i} LB(e_j)
 \]

- A heuristic algorithm [Bh’96] can be used to obtain a feasible schedule \(s \).
 - Optimal for acyclic, delayless SDF graphs, but not for general SDF graphs.

- Edge buffer lower bound (\(LB \)) can be obtained [Bh’96]:
 \[
 LB = \begin{cases}
 d & d > p + c - g \\
 p + c - g + d \mod g & \text{otherwise}
 \end{cases}
 \\[g = gcd(p, c)\]

Tighter Upper Bounds – Technique 2: Heavy Edges

- \(s_1: C C A A B \)
 - \(R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20 \)
 - \(s_1 \) is unadvisable, since \(e_3 \) is a "heavy edge", and we should avoid accumulating tokens on it

- \(s_2: C A C A B \)
 - \(R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12 \)
Tighter Upper Bounds – Technique 2: Heavy Edges

- **s_1**: C C A A B
 - \(R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20 \)
 - \(s_1 \) is unadvisable, since \(e_3 \) is a "heavy edge", and we should avoid accumulating tokens on it

- **s_2**: C A C A B
 - \(R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12 \)
Tighter Upper Bounds – Technique 2: Heavy Edges

- s_1: C C A A B
 - $R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20$
 - s_1 is unadvisable, since e_3 is a "heavy edge", and we should avoid accumulating tokens on it

- s_2: C A C A B
 - $R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12$
Tighter Upper Bounds – Technique 2: Heavy Edges

- s_1: C C A A B
 - $R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20$
 - s_1 is unadvisable, since e_3 is a "heavy edge", and we should avoid accumulating tokens on it

- s_2: C A C A B
 - $R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12$
Tighter Upper Bounds – Technique 2: Heavy Edges

- \(s_1 \): C C A A B
 - \(R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20 \)
 - \(s_1 \) is unadvisable, since \(e_3 \) is a "heavy edge", and we should avoid accumulating tokens on it

- \(s_2 \): C A C A B
 - \(R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12 \)
Tighter Upper Bounds – Technique 2: Heavy Edges

- **s₁:** C C A A B
 - \(R(s₁) = 2(e₁) + 2(e₂) + 16(e₃) = 20 \)
 - \(s₁ \) is unadvisable, since \(e₃ \) is a "heavy edge", and we should avoid accumulating tokens on it

- **s₂:** C A C A B
 - \(R(s₂) = 2(e₁) + 2(e₂) + 8(e₃) = 12 \)
Tight Upper Bounds – Technique 2: Heavy Edges ...

- Forward Heavy Edge (FHE): $c > p_1 + p_2 + \ldots + p_n$

- Backward Heavy Edge (BHE): $p > c_1 + c_2 + \ldots + c_n$

- Regular Heavy Edge (RHE): A FHE where $p(e)$ and $d(e)$ are integer multiples of $c(e)$, or A BHE where $c(e)$ and $d(e)$ are integer multiples of $p(e)$
Tighter Upper Bounds – Technique 2: Heavy Edges …

Forward Heavy Edge (FHE) \[c > p_1 + p_2 + \ldots + p_n \]

Backward Heavy Edge (BHE) \[p > c_1 + c_2 + \ldots + c_n \]

Regular Heavy Edge (RHE)
A FHE where \(p(e) \) and \(d(e) \) are integer multiples of \(c(e) \), or
A BHE where \(c(e) \) and \(d(e) \) are integer multiples of \(p(e) \)
Tighter Upper Bounds – Technique 2: Heavy Edges ...

Forward Heavy Edge (FHE)

\[c > p_1 + p_2 + \ldots + p_n \]

Backward Heavy Edge (BHE)

\[p > c_1 + c_2 + \ldots + c_n \]

Regular Heavy Edge (RHE)

A FHE where \(p(e) \) and \(d(e) \) are integer multiples of \(c(e) \), or

A BHE where \(c(e) \) and \(d(e) \) are integer multiples of \(p(e) \).
Tighter Upper Bounds – Technique 2: Heavy Edges ...

Forward Heavy Edge (FHE) — $c > p_1 + p_2 + \ldots + p_n$

Backward Heavy Edge (BHE) — $p > c_1 + c_2 + \ldots + c_n$

Regular Heavy Edge (RHE)
A FHE where $p(e)$ and $d(e)$ are integer multiples of $c(e)$, or
A BHE where $c(e)$ and $d(e)$ are integer multiples of $p(e)$
Upper Bounds for Heavy Edges:

- If e_f is an FHE, we can set UB of e_f as
 \[\max(p(e_f) + c(e_f), d(e_f)) + c(e_f) \]

- If e_b is an BHE, we can set UB of e_b as
 \[\max(p(e_b) + c(e_b), d(e_b)) + p(e_b) \]

- If e_r is an RHE, we can set the upper bound of e_r as $LB(e_r)$
Tighter Upper Bounds – Technique 2: Heavy Edges

Upper Bounds for Heavy Edges:

- If e_f is an FHE, we can set UB of e_f as
 \[
 \max(p(e_f) + c(e_f), d(e_f)) + c(e_f)
 \]

- If e_b is an BHE, we can set UB of e_b as
 \[
 \max(p(e_b) + c(e_b), d(e_b)) + p(e_b)
 \]

- If e_r is an RHE, we can set the upper bound of e_r as
 \[
 LB(e_r)
 \]
Tighter Upper Bounds – Technique 2: Heavy Edges

Upper Bounds for Heavy Edges:

- If \(e_f\) is an FHE, we can set UB of \(e_f\) as
 \[
 \max(p(e_f) + c(e_f), d(e_f)) + c(e_f)
 \]

- If \(e_b\) is an BHE, we can set UB of \(e_b\) as
 \[
 \max(p(e_b) + c(e_b), d(e_b)) + p(e_b)
 \]

- If \(e_r\) is an RHE, we can set the upper bound of \(e_r\) as
 \[
 LB(e_r)
 \]
Tighter Upper Bounds – Technique 2: Heavy Edges

Upper Bounds for Heavy Edges:

- If e_f is an FHE, we can set UB of e_f as

 $$\max(p(e_f) + c(e_f), d(e_f)) + c(e_f)$$

- If e_b is an BHE, we can set UB of e_b as

 $$\max(p(e_b) + c(e_b), d(e_b)) + p(e_b)$$

- If e_r is an RHE, we can set the upper bound of e_r as $LB(e_r)$
Tighter Upper Bounds – Technique 2: Heavy Edges

![Graph Diagram](image)

<table>
<thead>
<tr>
<th></th>
<th>e_{AB}</th>
<th>e_{BC}</th>
<th>e_{CE}</th>
<th>e_{BD}</th>
<th>e_{ED}</th>
<th>e_{DA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive UB</td>
<td>30</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Improved UB</td>
<td>16</td>
<td>2</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>32</td>
</tr>
</tbody>
</table>
Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the graph will become two separate subgraphs.

Given known optimal schedules s_1 and s_2 for subgraphs G_1 and G_2, we can get an optimal schedule s of G by
- firing each node by following the known optimal schedules s_1 and s_2, and
- firing the sink of the bridge e_b as soon as possible

$$R_{opt}(G) = R_{opt}(G_1) + R_{opt}(G_2) + LB(e_b)$$
Graph Decomposition

Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the graph will become two separate subgraphs.

Given known optimal schedules s_1 and s_2 for subgraphs G_1 and G_2, we can get an optimal schedule s of G by

- firing each node by following the known optimal schedules s_1 and s_2, and
- firing the sink of the bridge e_b as soon as possible.

$$R_{opt}(G) = R_{opt}(G_1) + R_{opt}(G_2) + LB(e_b)$$
Graph Decomposition

Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the graph will become two separate subgraphs.

![Graph Decomposition Diagram](image)

- Given known optimal schedules s_1 and s_2 for subgraphs G_1 and G_2, we can get an optimal schedule s of G by
 - firing each node by following the known optimal schedules s_1 and s_2, and
 - firing the sink of the bridge e_b as soon as possible

$$R_{opt}(G) = R_{opt}(G_1) + R_{opt}(G_2) + LB(e_b)$$
Graph Decomposition

Definition: Bridge

A *bridge* in graph theory is an edge s.t. if it is deleted, the graph will become two separate subgraphs.

Example

Given known optimal schedules s_1 and s_2 for subgraphs G_1 and G_2, we can get an optimal schedule s of G by:

- firing each node by following the known optimal schedules s_1 and s_2, and
- firing the sink of the bridge e_b as soon as possible

\[R_{opt}(G) = R_{opt}(G_1) + R_{opt}(G_2) + LB(e_b) \]
Graph Decomposition

Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the graph will become two separate subgraphs.

Given known optimal schedules s_1 and s_2 for subgraphs G_1 and G_2, we can get an optimal schedule s of G by

- firing each node by following the known optimal schedules s_1 and s_2, and
- firing the sink of the bridge e_b as soon as possible

$$R_{opt}(G) = R_{opt}(G_1) + R_{opt}(G_2) + LB(e_b)$$
Performance

- Use SDF3 [Gelein’06], to generate random SDF graphs
- Compare the state space size with and without our optimizations

<table>
<thead>
<tr>
<th>Experiment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Actors</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Number of States with the original approach in [Gelein’05]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOUND-1 (MB)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7064</td>
<td>26394</td>
</tr>
<tr>
<td>BOUND (MB)</td>
<td>13</td>
<td>88</td>
<td>115</td>
<td>452</td>
<td>193</td>
<td>195</td>
<td>216</td>
<td>18341</td>
</tr>
<tr>
<td>Number of States with the optimized approach in this paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOUND-1 (s)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1244</td>
<td>11111</td>
</tr>
<tr>
<td>BOUND (s)</td>
<td>13</td>
<td>64</td>
<td>82</td>
<td>114</td>
<td>112</td>
<td>92</td>
<td>91</td>
<td>4120</td>
</tr>
</tbody>
</table>

Performance

- Use SDF³ [Gelein’06], to generate random SDF graphs
- Compare the state space size with and without our optimizations

<table>
<thead>
<tr>
<th>Experiment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Actors</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Number of States with the original approach in [Gelein’05]</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7064</td>
<td>26394</td>
</tr>
<tr>
<td>BOUND -1 (MB)</td>
<td>13</td>
<td>88</td>
<td>115</td>
<td>452</td>
<td>193</td>
<td>195</td>
<td>216</td>
<td>18341</td>
</tr>
<tr>
<td>BOUND (MB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of States with the optimized approach in this paper</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1244</td>
<td>11111</td>
</tr>
<tr>
<td>BOUND -1 (s)</td>
<td>13</td>
<td>64</td>
<td>82</td>
<td>114</td>
<td>112</td>
<td>92</td>
<td>91</td>
<td>4120</td>
</tr>
<tr>
<td>BOUND (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance

- Use SDF3 [Gelein’06], to generate random SDF graphs
- Compare the state space size with and without our optimizations

<table>
<thead>
<tr>
<th>Experiment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Actors</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of States with the original approach in [Gelein’05]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOUND1 (MB)</td>
</tr>
<tr>
<td>BOUND (MB)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of States with the optimized approach in this paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOUND1 (s)</td>
</tr>
<tr>
<td>BOUND (s)</td>
</tr>
</tbody>
</table>

Performance

- Use SDF3 [Gelein’06], to generate random SDF graphs
- Compare the state space size with and without our optimizations

<table>
<thead>
<tr>
<th>Experiment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Actors</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Number of States with the original approach in [Gelein’05]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOUND$^{-1}$ (MB)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7064</td>
<td>26394</td>
</tr>
<tr>
<td>BOUND (MB)</td>
<td>13</td>
<td>88</td>
<td>115</td>
<td>452</td>
<td>193</td>
<td>195</td>
<td>216</td>
<td>18341</td>
</tr>
<tr>
<td>Number of States with the optimized approach in this paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOUND$^{-1}$ (s)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1244</td>
<td>11111</td>
</tr>
<tr>
<td>BOUND (s)</td>
<td>13</td>
<td>64</td>
<td>82</td>
<td>114</td>
<td>112</td>
<td>92</td>
<td>91</td>
<td>4120</td>
</tr>
</tbody>
</table>

Outline

1 Overview

2 Introduction

3 Improving MC Scalability
 - Firing Count Restriction
 - Tighter Edge Buffer Size Upper Bounds
 - Technique 1
 - Technique 2
 - Graph Decomposition

4 Performance

5 Conclusions
Conclusions

- Presented a set of techniques for improving MC efficiency
 - Actor firing count restriction
 - Tighter upper bounds for edge buffer size
 - Graph decomposition

- Performance evaluation shows their effectiveness in reducing state space