
Improving Scalability of Model-Checking

for Minimizing Bu�er Requirements of

Synchronous Data�ow Graphs

Nan Guan1, Zonghua Gu2, Wang Yi3, Ge Yu1

1Northeastern University, China

2Hong Kong University of Science and Technology, China

3Uppsala University, Swenden

ASP�DAC'09 January 18�22, 2009

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Outline

1 Overview

2 Introduction

3 Improving MC Scalability

Firing Count Restriction

Tighter Edge Bu�er Size Upper Bounds
Technique 1
Technique 2

Graph Decomposition

4 Performance

5 Conclusions

ASP�DAC'09 - 2 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Outline

1 Overview

2 Introduction

3 Improving MC Scalability

Firing Count Restriction

Tighter Edge Bu�er Size Upper Bounds
Technique 1
Technique 2

Graph Decomposition

4 Performance

5 Conclusions

ASP�DAC'09 - 3 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Overview

Synchronous data�ow (SDF)
• Also called Statically-Schedulable Data�ow (SSDF)
• Widely used in multimedia, signal processing, etc.
• Each actor invocation consumes and produces a constant
number of data tokens.

Bu�er Size minimization
• Memory is a scare resource in embedded systems
• NP-complete

Model-checking (MC)
• pro: obtain provably-optimal solution
• con: state space explosion limits scalability

Contribution: improve MC scalability by exploiting

SDF-speci�c properties

ASP�DAC'09 - 4 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Overview

Synchronous data�ow (SDF)
• Also called Statically-Schedulable Data�ow (SSDF)
• Widely used in multimedia, signal processing, etc.
• Each actor invocation consumes and produces a constant
number of data tokens.

Bu�er Size minimization
• Memory is a scare resource in embedded systems
• NP-complete

Model-checking (MC)
• pro: obtain provably-optimal solution
• con: state space explosion limits scalability

Contribution: improve MC scalability by exploiting

SDF-speci�c properties

ASP�DAC'09 - 4 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Overview

Synchronous data�ow (SDF)
• Also called Statically-Schedulable Data�ow (SSDF)
• Widely used in multimedia, signal processing, etc.
• Each actor invocation consumes and produces a constant
number of data tokens.

Bu�er Size minimization
• Memory is a scare resource in embedded systems
• NP-complete

Model-checking (MC)
• pro: obtain provably-optimal solution
• con: state space explosion limits scalability

Contribution: improve MC scalability by exploiting

SDF-speci�c properties

ASP�DAC'09 - 4 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Overview

Synchronous data�ow (SDF)
• Also called Statically-Schedulable Data�ow (SSDF)
• Widely used in multimedia, signal processing, etc.
• Each actor invocation consumes and produces a constant
number of data tokens.

Bu�er Size minimization
• Memory is a scare resource in embedded systems
• NP-complete

Model-checking (MC)
• pro: obtain provably-optimal solution
• con: state space explosion limits scalability

Contribution: improve MC scalability by exploiting

SDF-speci�c properties

ASP�DAC'09 - 4 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Outline

1 Overview

2 Introduction

3 Improving MC Scalability

Firing Count Restriction

Tighter Edge Bu�er Size Upper Bounds
Technique 1
Technique 2

Graph Decomposition

4 Performance

5 Conclusions

ASP�DAC'09 - 5 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Introduction to SDF

a SDF example

A B Ce1
2 3

e2
1 2

Balance Equations:

for each edge e: rsrc ×p(e) = rsnk × c(e)
For this example:

rA×1 = rC ×3, rA×2 = rB ×3, rB ×1 = rC ×2

solution (repetition vector): rA = 3, rB = 2, rC = 1

any legal schedule must contain 3 �rings of A, 2 �rings of

B and 1 �ring of C

possible schedules: AAABBC, AABABC

ASP�DAC'09 - 6 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Introduction to SDF

a SDF example

A B Ce1
2 3

e2
1 2

Balance Equations:

for each edge e: rsrc ×p(e) = rsnk × c(e)
For this example:

rA×1 = rC ×3, rA×2 = rB ×3, rB ×1 = rC ×2

solution (repetition vector): rA = 3, rB = 2, rC = 1

any legal schedule must contain 3 �rings of A, 2 �rings of

B and 1 �ring of C

possible schedules: AAABBC, AABABC

ASP�DAC'09 - 6 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Introduction to SDF

a SDF example

A B Ce1
2 3

e2
1 2

Balance Equations:

for each edge e: rsrc ×p(e) = rsnk × c(e)
For this example:

rA×1 = rC ×3, rA×2 = rB ×3, rB ×1 = rC ×2

solution (repetition vector): rA = 3, rB = 2, rC = 1

any legal schedule must contain 3 �rings of A, 2 �rings of

B and 1 �ring of C

possible schedules: AAABBC, AABABC

ASP�DAC'09 - 6 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Introduction to SDF

a SDF example

A B Ce1
2 3

e2
1 2

Balance Equations:

for each edge e: rsrc ×p(e) = rsnk × c(e)
For this example:

rA×1 = rC ×3, rA×2 = rB ×3, rB ×1 = rC ×2

solution (repetition vector): rA = 3, rB = 2, rC = 1

any legal schedule must contain 3 �rings of A, 2 �rings of

B and 1 �ring of C

possible schedules: AAABBC, AABABC

ASP�DAC'09 - 6 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Introduction to SDF

a SDF example

A B Ce1
2 3

e2
1 2

Balance Equations:

for each edge e: rsrc ×p(e) = rsnk × c(e)
For this example:

rA×1 = rC ×3, rA×2 = rB ×3, rB ×1 = rC ×2

solution (repetition vector): rA = 3, rB = 2, rC = 1

any legal schedule must contain 3 �rings of A, 2 �rings of

B and 1 �ring of C

possible schedules: AAABBC, AABABC

ASP�DAC'09 - 6 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Introduction to SDF

a SDF example

A B Ce1
2 3

e2
1 2

Balance Equations:

for each edge e: rsrc ×p(e) = rsnk × c(e)
For this example:

rA×1 = rC ×3, rA×2 = rB ×3, rB ×1 = rC ×2

solution (repetition vector): rA = 3, rB = 2, rC = 1

any legal schedule must contain 3 �rings of A, 2 �rings of

B and 1 �ring of C

possible schedules: AAABBC, AABABC

ASP�DAC'09 - 6 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Introduction to SDF

a SDF example

A B Ce1
2 3

e2
1 2

Balance Equations:

for each edge e: rsrc ×p(e) = rsnk × c(e)
For this example:

rA×1 = rC ×3, rA×2 = rB ×3, rB ×1 = rC ×2

solution (repetition vector): rA = 3, rB = 2, rC = 1

any legal schedule must contain 3 �rings of A, 2 �rings of

B and 1 �ring of C

possible schedules: AAABBC, AABABC

ASP�DAC'09 - 6 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes

s1:

A B Ce1
2 3

e2
1 2

AAABBC

Max Req.= 6 Max Req.=2

AAABBC

Total Required Bu�er Size: 6+2 =8

We assume that each edge has its dedicated bu�er space in this paper,

instead of a global shared bu�er space for all edges

ASP�DAC'09 - 7 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes

s1:

A B Ce1
2 3

e2
1 2

AAABBC

Max Req.= 6 Max Req.=2

AAABBC

Total Required Bu�er Size: 6+2 =8

We assume that each edge has its dedicated bu�er space in this paper,

instead of a global shared bu�er space for all edges

ASP�DAC'09 - 7 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes

s1:

A B Ce1
2 3

e2
1 2

AAABBC

Max Req.= 6 Max Req.=2

AAABBC

Total Required Bu�er Size: 6+2 =8

We assume that each edge has its dedicated bu�er space in this paper,

instead of a global shared bu�er space for all edges

ASP�DAC'09 - 7 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes

s1:

A B Ce1
2 3

e2
1 2

AAABBC

Max Req.= 6 Max Req.=2

AAABBC

Total Required Bu�er Size: 6+2 =8

We assume that each edge has its dedicated bu�er space in this paper,

instead of a global shared bu�er space for all edges

ASP�DAC'09 - 7 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes

s1:

A B Ce1
2 3

e2
1 2

AAABBC

Max Req.= 6 Max Req.=2

AAABBC

Total Required Bu�er Size: 6+2 =8

We assume that each edge has its dedicated bu�er space in this paper,

instead of a global shared bu�er space for all edges

ASP�DAC'09 - 7 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes

s1:

A B Ce1
2 3

e2
1 2

AAABBC

Max Req.= 6 Max Req.=2

AAABBC

Total Required Bu�er Size: 6+2 =8

We assume that each edge has its dedicated bu�er space in this paper,

instead of a global shared bu�er space for all edges

ASP�DAC'09 - 7 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes

s1:

A B Ce1
2 3

e2
1 2

AAABBC

Max Req.= 6 Max Req.=2

AAABBC

Total Required Bu�er Size: 6+2 =8

We assume that each edge has its dedicated bu�er space in this paper,

instead of a global shared bu�er space for all edges

ASP�DAC'09 - 7 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes

s1:

A B Ce1
2 3

e2
1 2

AAABBC

Max Req.= 6 Max Req.=2

AAABBC

Total Required Bu�er Size: 6+2 =8

We assume that each edge has its dedicated bu�er space in this paper,

instead of a global shared bu�er space for all edges

ASP�DAC'09 - 7 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes

s1:

A B Ce1
2 3

e2
1 2

AAABBC

Max Req.= 6 Max Req.=2

AAABBC

Total Required Bu�er Size: 6+2 =8

We assume that each edge has its dedicated bu�er space in this paper,

instead of a global shared bu�er space for all edges

ASP�DAC'09 - 7 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes ...

s2:

A B Ce1
2 3

e2
1 2

AABABC

Max Req.= 4 Max Req.=2

AABABC

Total Required Bu�er Size: 4+2 =6

ASP�DAC'09 - 8 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes ...

s2:

A B Ce1
2 3

e2
1 2

AABABC

Max Req.= 4 Max Req.=2

AABABC

Total Required Bu�er Size: 4+2 =6

ASP�DAC'09 - 8 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes ...

s2:

A B Ce1
2 3

e2
1 2

AABABC

Max Req.= 4 Max Req.=2

AABABC

Total Required Bu�er Size: 4+2 =6

ASP�DAC'09 - 8 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes ...

s2:

A B Ce1
2 3

e2
1 2

AABABC

Max Req.= 4 Max Req.=2

AABABC

Total Required Bu�er Size: 4+2 =6

ASP�DAC'09 - 8 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes ...

s2:

A B Ce1
2 3

e2
1 2

AABABC

Max Req.= 4 Max Req.=2

AABABC

Total Required Bu�er Size: 4+2 =6

ASP�DAC'09 - 8 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes ...

s2:

A B Ce1
2 3

e2
1 2

AABABC

Max Req.= 4 Max Req.=2

AABABC

Total Required Bu�er Size: 4+2 =6

ASP�DAC'09 - 8 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes ...

s2:

A B Ce1
2 3

e2
1 2

AABABC

Max Req.= 4 Max Req.=2

AABABC

Total Required Bu�er Size: 4+2 =6

ASP�DAC'09 - 8 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes ...

s2:

A B Ce1
2 3

e2
1 2

AABABC

Max Req.= 4 Max Req.=2

AABABC

Total Required Bu�er Size: 4+2 =6

ASP�DAC'09 - 8 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

SDF Scheduling and Edge Bu�er Sizes ...

s2:

A B Ce1
2 3

e2
1 2

AABABC

Max Req.= 4 Max Req.=2

AABABC

Total Required Bu�er Size: 4+2 =6

ASP�DAC'09 - 8 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

State Space Representation

A B Ce1
2 3

e2
1 2

s1: A A A B B C

e1

e2

A A A

B

B

C

ASP�DAC'09 - 9 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

State Space Representation ...

A B Ce1
2 3

e2
1 2

s2: A A B A B C

e1

e2

A A

A
B

B

C

ASP�DAC'09 - 10 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Using MC to Find Minimal Bu�er Size

System Model

TL Spec

Model-Checker

(SPIN,NuSMV)

True

False + Counter

Example (schedule)

Veri�cation Claim: Linear Temporal Logic (LTL) formula
(for SPIN):

• <> BufReq ≥ BOUND
• "All possible schedules will eventually lead to a state
where the total bu�er size requirement is larger than or
equal to a user-speci�ed bound."

If proven False, then a feasible schedule has been found

with bu�er size requirement BufReq < BOUND.

Set BOUND = BufReq and run MC. BOUND is reduced

iteratively until the LTL formula is proven True.

ASP�DAC'09 - 11 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Using MC to Find Minimal Bu�er Size

System Model

TL Spec

Model-Checker

(SPIN,NuSMV)

True

False + Counter

Example (schedule)

Veri�cation Claim: Linear Temporal Logic (LTL) formula
(for SPIN):

• <> BufReq ≥ BOUND
• "All possible schedules will eventually lead to a state
where the total bu�er size requirement is larger than or
equal to a user-speci�ed bound."

If proven False, then a feasible schedule has been found

with bu�er size requirement BufReq < BOUND.

Set BOUND = BufReq and run MC. BOUND is reduced

iteratively until the LTL formula is proven True.

ASP�DAC'09 - 11 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Using MC to Find Minimal Bu�er Size

System Model

TL Spec

Model-Checker

(SPIN,NuSMV)

True

False + Counter

Example (schedule)

Veri�cation Claim: Linear Temporal Logic (LTL) formula
(for SPIN):

• <> BufReq ≥ BOUND
• "All possible schedules will eventually lead to a state
where the total bu�er size requirement is larger than or
equal to a user-speci�ed bound."

If proven False, then a feasible schedule has been found

with bu�er size requirement BufReq < BOUND.

Set BOUND = BufReq and run MC. BOUND is reduced

iteratively until the LTL formula is proven True.

ASP�DAC'09 - 11 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Using MC to Find Minimal Bu�er Size

System Model

TL Spec

Model-Checker

(SPIN,NuSMV)

True

False + Counter

Example (schedule)

Veri�cation Claim: Linear Temporal Logic (LTL) formula
(for SPIN):

• <> BufReq ≥ BOUND
• "All possible schedules will eventually lead to a state
where the total bu�er size requirement is larger than or
equal to a user-speci�ed bound."

If proven False, then a feasible schedule has been found

with bu�er size requirement BufReq < BOUND.

Set BOUND = BufReq and run MC. BOUND is reduced

iteratively until the LTL formula is proven True.

ASP�DAC'09 - 11 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Using MC to Find Minimal Bu�er Size

System Model

TL Spec

Model-Checker

(SPIN,NuSMV)

True

False + Counter

Example (schedule)

Veri�cation Claim: Linear Temporal Logic (LTL) formula
(for SPIN):

• <> BufReq ≥ BOUND
• "All possible schedules will eventually lead to a state
where the total bu�er size requirement is larger than or
equal to a user-speci�ed bound."

If proven False, then a feasible schedule has been found

with bu�er size requirement BufReq < BOUND.

Set BOUND = BufReq and run MC. BOUND is reduced

iteratively until the LTL formula is proven True.

ASP�DAC'09 - 11 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Outline

1 Overview

2 Introduction

3 Improving MC Scalability

Firing Count Restriction

Tighter Edge Bu�er Size Upper Bounds
Technique 1
Technique 2

Graph Decomposition

4 Performance

5 Conclusions

ASP�DAC'09 - 12 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Rationale Behind the Techniques

Firing Count Restriction
• helps reduce system state space

Tighter Edge Bu�er Size Upper Bounds (UB)
• helps reduce system state space
• also helps reduce the number of model-checker
invocations in the iterative procedure to obtain the
minimum bu�er size requirement

Graph Decomposition
• use divide-and-conquer to decompose a large problem into
multiple smaller sub-problems for certain SDF graphs with
a special topology

ASP�DAC'09 - 13 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Firing Count Restriction

A B Ce1
2 3

e2
1 2

e1

e2

ASP�DAC'09 - 14 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Firing Count Restriction ...

If a SDF graph has a schedule with bounded memory

requirement, it must have a periodic schedule where each

actor �ring count is equal to its �ring count in the

repetition vector [Lee'87].

To help reduce MC state space, we restrict each actor's

�ring count to not exceed its entry in the repetition vector

Edward A. Lee, David G. Messerschmitt: Static Scheduling of

Synchronous Data Flow Programs for Digital Signal Processing. IEEE

Trans. Computers 36(1): 24-35 (1987)

ASP�DAC'09 - 15 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 1

A Bd(e)
p(e) c(e)

A Naive Upper Bound (UB):

UB(e) = p(e)× rsrc(e)+d(e)

�This upper bound is too loose!�

ASP�DAC'09 - 16 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 1

A Bd(e)
p(e) c(e)

A Naive Upper Bound (UB):

UB(e) = p(e)× rsrc(e)+d(e)

�This upper bound is too loose!�

ASP�DAC'09 - 16 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 1 ...

Given a known feasible schedule s with total bu�er

requirement R(s):

UB(ei)≤ R(s)− ∑
ej 6=ei

LB(ej)

A heuristic algorithm [Bh'96] can be used to obtain a
feasible schedule s.

• Optimal for acyclic, delayless SDF graphs, but not for
general SDF graphs.

Edge bu�er lower bound (LB) can be obtained [Bh'96]:

LB =

{
d d > p+ c−g
p+ c−g +d mod g otherwise

g = gcd(p,c)

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from

Data�ow Graphs, Kluewer Academic Publishers, 1996

ASP�DAC'09 - 17 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 1 ...

Given a known feasible schedule s with total bu�er

requirement R(s):

UB(ei)≤ R(s)− ∑
ej 6=ei

LB(ej)

A heuristic algorithm [Bh'96] can be used to obtain a
feasible schedule s.

• Optimal for acyclic, delayless SDF graphs, but not for
general SDF graphs.

Edge bu�er lower bound (LB) can be obtained [Bh'96]:

LB =

{
d d > p+ c−g
p+ c−g +d mod g otherwise

g = gcd(p,c)

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from

Data�ow Graphs, Kluewer Academic Publishers, 1996

ASP�DAC'09 - 17 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 1 ...

Given a known feasible schedule s with total bu�er

requirement R(s):

UB(ei)≤ R(s)− ∑
ej 6=ei

LB(ej)

A heuristic algorithm [Bh'96] can be used to obtain a
feasible schedule s.

• Optimal for acyclic, delayless SDF graphs, but not for
general SDF graphs.

Edge bu�er lower bound (LB) can be obtained [Bh'96]:

LB =

{
d d > p+ c−g
p+ c−g +d mod g otherwise

g = gcd(p,c)

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from

Data�ow Graphs, Kluewer Academic Publishers, 1996

ASP�DAC'09 - 17 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

A C

B

e3
8 8

e2
1

2
e1

1

2

s1: C C A A B
• R(s1) = 2(e1)+2(e2)+16(e3) = 20
• s1 is unadvisable, since e3 is a "heavy edge", and we
should avoid accumulating tokens on it

s2: C A C A B
• R(s2) = 2(e1)+2(e2)+8(e3) = 12

ASP�DAC'09 - 18 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

A C

B

e3
8 8

e2
1

2
e1

1

2

s1: C C A A B
• R(s1) = 2(e1)+2(e2)+16(e3) = 20
• s1 is unadvisable, since e3 is a "heavy edge", and we
should avoid accumulating tokens on it

s2: C A C A B
• R(s2) = 2(e1)+2(e2)+8(e3) = 12

ASP�DAC'09 - 18 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

A C

B

e3
8 8

e2
1

2
e1

1

2

s1: C C A A B
• R(s1) = 2(e1)+2(e2)+16(e3) = 20
• s1 is unadvisable, since e3 is a "heavy edge", and we
should avoid accumulating tokens on it

s2: C A C A B
• R(s2) = 2(e1)+2(e2)+8(e3) = 12

ASP�DAC'09 - 18 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

A C

B

e3
8 8

e2
1

2
e1

1

2

s1: C C A A B
• R(s1) = 2(e1)+2(e2)+16(e3) = 20
• s1 is unadvisable, since e3 is a "heavy edge", and we
should avoid accumulating tokens on it

s2: C A C A B
• R(s2) = 2(e1)+2(e2)+8(e3) = 12

ASP�DAC'09 - 18 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

A C

B

e3
8 8

e2
1

2
e1

1

2

s1: C C A A B
• R(s1) = 2(e1)+2(e2)+16(e3) = 20
• s1 is unadvisable, since e3 is a "heavy edge", and we
should avoid accumulating tokens on it

s2: C A C A B
• R(s2) = 2(e1)+2(e2)+8(e3) = 12

ASP�DAC'09 - 18 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

A C

B

e3
8 8

e2
1

2
e1

1

2

s1: C C A A B
• R(s1) = 2(e1)+2(e2)+16(e3) = 20
• s1 is unadvisable, since e3 is a "heavy edge", and we
should avoid accumulating tokens on it

s2: C A C A B
• R(s2) = 2(e1)+2(e2)+8(e3) = 12

ASP�DAC'09 - 18 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges ...

Forward Heavy Edge (FHE) �� c > p1 +p2 + ...+pn

A
p1 p2
...

pn

c

Backward Heavy Edge (BHE) �� p > c1 + c2 + ...+ cn

A
c1c2
...
cn

p

Regular Heavy Edge (RHE)

A FHE where p(e) and d(e) are integer multiples of c(e), or

A BHE where c(e) and d(e) are integer multiples of p(e)

ASP�DAC'09 - 19 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges ...

Forward Heavy Edge (FHE) �� c > p1 +p2 + ...+pn

A
p1 p2
...

pn

c

Backward Heavy Edge (BHE) �� p > c1 + c2 + ...+ cn

A
c1c2
...
cn

p

Regular Heavy Edge (RHE)

A FHE where p(e) and d(e) are integer multiples of c(e), or

A BHE where c(e) and d(e) are integer multiples of p(e)

ASP�DAC'09 - 19 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges ...

Forward Heavy Edge (FHE) �� c > p1 +p2 + ...+pn

A
p1 p2
...

pn

c

Backward Heavy Edge (BHE) �� p > c1 + c2 + ...+ cn

A
c1c2
...
cn

p

Regular Heavy Edge (RHE)

A FHE where p(e) and d(e) are integer multiples of c(e), or

A BHE where c(e) and d(e) are integer multiples of p(e)

ASP�DAC'09 - 19 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges ...

Forward Heavy Edge (FHE) �� c > p1 +p2 + ...+pn

A
p1 p2
...

pn

c

Backward Heavy Edge (BHE) �� p > c1 + c2 + ...+ cn

A
c1c2
...
cn

p

Regular Heavy Edge (RHE)

A FHE where p(e) and d(e) are integer multiples of c(e), or

A BHE where c(e) and d(e) are integer multiples of p(e)

ASP�DAC'09 - 19 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

Upper Bounds for Heavy Edges:

If ef is an FHE, we can set UB of ef as

max(p(ef)+ c(ef),d(ef))+ c(ef)

If eb is an BHE, we can set UB of eb as

max(p(eb)+ c(eb),d(eb))+p(eb)

If er is an RHE, we can set the upper bound of er as

LB(er)

ASP�DAC'09 - 20 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

Upper Bounds for Heavy Edges:

If ef is an FHE, we can set UB of ef as

max(p(ef)+ c(ef),d(ef))+ c(ef)

If eb is an BHE, we can set UB of eb as

max(p(eb)+ c(eb),d(eb))+p(eb)

If er is an RHE, we can set the upper bound of er as

LB(er)

ASP�DAC'09 - 20 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

Upper Bounds for Heavy Edges:

If ef is an FHE, we can set UB of ef as

max(p(ef)+ c(ef),d(ef))+ c(ef)

If eb is an BHE, we can set UB of eb as

max(p(eb)+ c(eb),d(eb))+p(eb)

If er is an RHE, we can set the upper bound of er as

LB(er)

ASP�DAC'09 - 20 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

Upper Bounds for Heavy Edges:

If ef is an FHE, we can set UB of ef as

max(p(ef)+ c(ef),d(ef))+ c(ef)

If eb is an BHE, we can set UB of eb as

max(p(eb)+ c(eb),d(eb))+p(eb)

If er is an RHE, we can set the upper bound of er as

LB(er)

ASP�DAC'09 - 20 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Tighter Upper Bounds � Technique 2:

Heavy Edges

A B C

D E

12 6

eAB
6 5

eBC
2 2

eDA

12

2
eED

5 5

eBD

2

2

eCE

1

1

eAB eBC eCE eBD eED eDA
Naive UB 30 12 6 12 30 60

Improved UB 16 2 6 12 5 32

ASP�DAC'09 - 21 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Graph Decomposition

De�nition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the

graph will become two separate subgraphs.

A

B

C

D

E

F

eb

G1 G2

Given known optimal schedules s1 and s2 for subgraphs G1

and G2 , we can get an optimal schedule s of G by
• �ring each node by following the known optimal schedules
s1 and s2, and

• �ring the sink of the bridge eb as soon as possible

Ropt(G) = Ropt(G1)+Ropt(G2)+LB(eb)
ASP�DAC'09 - 22 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Graph Decomposition

De�nition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the

graph will become two separate subgraphs.

A

B

C

D

E

F

eb

G1 G2

Given known optimal schedules s1 and s2 for subgraphs G1

and G2 , we can get an optimal schedule s of G by
• �ring each node by following the known optimal schedules
s1 and s2, and

• �ring the sink of the bridge eb as soon as possible

Ropt(G) = Ropt(G1)+Ropt(G2)+LB(eb)
ASP�DAC'09 - 22 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Graph Decomposition

De�nition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the

graph will become two separate subgraphs.

A

B

C

D

E

F

eb

G1 G2

Given known optimal schedules s1 and s2 for subgraphs G1

and G2 , we can get an optimal schedule s of G by
• �ring each node by following the known optimal schedules
s1 and s2, and

• �ring the sink of the bridge eb as soon as possible

Ropt(G) = Ropt(G1)+Ropt(G2)+LB(eb)
ASP�DAC'09 - 22 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Graph Decomposition

De�nition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the

graph will become two separate subgraphs.

A

B

C

D

E

F

eb

G1 G2

Given known optimal schedules s1 and s2 for subgraphs G1

and G2 , we can get an optimal schedule s of G by
• �ring each node by following the known optimal schedules
s1 and s2, and

• �ring the sink of the bridge eb as soon as possible

Ropt(G) = Ropt(G1)+Ropt(G2)+LB(eb)
ASP�DAC'09 - 22 -

Overview

Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Bu�er Size
Upper
Bounds

Technique 1

Technique 2

Graph De-
composition

Performance

Conclusions

Graph Decomposition

De�nition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the

graph will become two separate subgraphs.

A

B

C

D

E

F

eb

G1 G2

Given known optimal schedules s1 and s2 for subgraphs G1

and G2 , we can get an optimal schedule s of G by
• �ring each node by following the known optimal schedules
s1 and s2, and

• �ring the sink of the bridge eb as soon as possible

Ropt(G) = Ropt(G1)+Ropt(G2)+LB(eb)
ASP�DAC'09 - 22 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Outline

1 Overview

2 Introduction

3 Improving MC Scalability

Firing Count Restriction

Tighter Edge Bu�er Size Upper Bounds
Technique 1
Technique 2

Graph Decomposition

4 Performance

5 Conclusions

ASP�DAC'09 - 23 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Performance

Use SDF3 [Gelein'06], to generate random SDF graphs

Compare the state space size with and without our

optimizations

Experiment 1 2 3 4 5 6 7 8

Number of Actors 4 6 8 10 12 14 16 18

Number of States with the original approach in [Gelein'05]

BOUND-1 (MB) 2 2 2 2 2 2 7064 26394
BOUND (MB) 13 88 115 452 193 195 216 18341

Number of States with the optimized approach in this paper

BOUND-1 (s) 2 2 2 2 2 2 1244 11111
BOUND (s) 13 64 82 114 112 92 91 4120

M. Geilen, S. Stuijk and T. Basten. SDF3: SDF for free. ACSD 2006.

M. Geilen, T. Basten and S. Stuijk: Minimizing bu�er requirements of
synchronous data�ow graphs with model checking. DAC 2005.

ASP�DAC'09 - 24 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Performance

Use SDF3 [Gelein'06], to generate random SDF graphs

Compare the state space size with and without our

optimizations

Experiment 1 2 3 4 5 6 7 8

Number of Actors 4 6 8 10 12 14 16 18

Number of States with the original approach in [Gelein'05]

BOUND-1 (MB) 2 2 2 2 2 2 7064 26394
BOUND (MB) 13 88 115 452 193 195 216 18341

Number of States with the optimized approach in this paper

BOUND-1 (s) 2 2 2 2 2 2 1244 11111
BOUND (s) 13 64 82 114 112 92 91 4120

M. Geilen, S. Stuijk and T. Basten. SDF3: SDF for free. ACSD 2006.

M. Geilen, T. Basten and S. Stuijk: Minimizing bu�er requirements of
synchronous data�ow graphs with model checking. DAC 2005.

ASP�DAC'09 - 24 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Performance

Use SDF3 [Gelein'06], to generate random SDF graphs

Compare the state space size with and without our

optimizations

Experiment 1 2 3 4 5 6 7 8

Number of Actors 4 6 8 10 12 14 16 18

Number of States with the original approach in [Gelein'05]

BOUND-1 (MB) 2 2 2 2 2 2 7064 26394
BOUND (MB) 13 88 115 452 193 195 216 18341

Number of States with the optimized approach in this paper

BOUND-1 (s) 2 2 2 2 2 2 1244 11111
BOUND (s) 13 64 82 114 112 92 91 4120

M. Geilen, S. Stuijk and T. Basten. SDF3: SDF for free. ACSD 2006.

M. Geilen, T. Basten and S. Stuijk: Minimizing bu�er requirements of
synchronous data�ow graphs with model checking. DAC 2005.

ASP�DAC'09 - 24 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Performance

Use SDF3 [Gelein'06], to generate random SDF graphs

Compare the state space size with and without our

optimizations

Experiment 1 2 3 4 5 6 7 8

Number of Actors 4 6 8 10 12 14 16 18

Number of States with the original approach in [Gelein'05]

BOUND-1 (MB) 2 2 2 2 2 2 7064 26394
BOUND (MB) 13 88 115 452 193 195 216 18341

Number of States with the optimized approach in this paper

BOUND-1 (s) 2 2 2 2 2 2 1244 11111
BOUND (s) 13 64 82 114 112 92 91 4120

M. Geilen, S. Stuijk and T. Basten. SDF3: SDF for free. ACSD 2006.

M. Geilen, T. Basten and S. Stuijk: Minimizing bu�er requirements of
synchronous data�ow graphs with model checking. DAC 2005.

ASP�DAC'09 - 24 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Outline

1 Overview

2 Introduction

3 Improving MC Scalability

Firing Count Restriction

Tighter Edge Bu�er Size Upper Bounds
Technique 1
Technique 2

Graph Decomposition

4 Performance

5 Conclusions

ASP�DAC'09 - 25 -

Overview

Introduction

Improving
MC
Scalability

Performance

Conclusions

Conclusions

Presented a set of techniques for improving MC e�ciency
• Actor �ring count restriction
• Tighter upper bounds for edge bu�er size
• Graph decomposition

Performance evaluation shows their e�ectiveness in

reducing state space

ASP�DAC'09 - 26 -

	Overview
	Introduction
	Improving MC Scalability
	Firing Count Restriction
	Tighter Edge Buffer Size Upper Bounds
	Graph Decomposition

	Performance
	Conclusions

