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Synchronous dataflow (SDF)
e Also called Statically-Schedulable Dataflow (SSDF)
e Widely used in multimedia, signal processing, etc.
e Each actor invocation consumes and produces a constant
number of data tokens.
Buffer Size minimization

e Memory is a scare resource in embedded systems
o NP-complete

Model-checking (MC)

e pro: obtain provably-optimal solution

e con: state space explosion limits scalability
Contribution: improve MC scalability by exploiting
SDF-specific properties
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m for each edge e:  rge X p(€) = rsnk X c(e€)

Conclusions .

For this example:
BraX1l=rcx3, rax2=rgx3, rgXl=rcx2
m solution (repetition vector): ra=3,rg =2,rc =1

m any legal schedule must contain 3 firings of A, 2 firings of
B and 1 firing of C

m possible schedules: AAABBC, AABABC
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Overvien sl: AAABBC AAABBC - -

Introduction
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Performance Max Req= 6 Max Req=2

Conclusions

Total Required Buffer Size: 6 +2 =8

We assume that each edge has its dedicated buffer space in this paper,
instead of a global shared buffer space for all edges
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Using MC to Find Minimal Buffer Size

System Model

~>

m Verification Claim: Linear Temporal Logic (LTL) formula

(for SPIN):

Model-Checker
(SPIN,NuSMV)

>

e <> BufReq > BOUND

e "All possible schedules will eventually lead to a state
where the total buffer size requirement is larger than or
equal to a user-specified bound."

T

False + Counter
Example (schedule)

m If proven False, then a feasible schedule has been found
with buffer size requirement BufReq < BOUND.
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Using MC to Find Minimal Buffer Size

> Model-Checker

(SPIN,NuSMV) [~

System Model /

False + Counter
Example (schedule)

m Verification Claim: Linear Temporal Logic (LTL) formula

(for SPIN):
e <> BufReq > BOUND

e "All possible schedules will eventually lead to a state
where the total buffer size requirement is larger than or

equal to a user-specified bound."

m If proven False, then a feasible schedule has been found
with buffer size requirement BufReq < BOUND.

m Set BOUND = BufReq and run MC.

BOUND is reduced

iteratively until the LTL formula is proven True.
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Firing Count Restriction

m If a SDF graph has a schedule with bounded memory
requirement, it must have a periodic schedule where each
actor firing count is equal to its firing count in the
repetition vector [Lee’87].

m To help reduce MC state space, we restrict each actor’s
firing count to not exceed its entry in the repetition vector

Edward A. Lee, David G. Messerschmitt: Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing. |EEE
Trans. Computers 36(1): 24-35 (1987)
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p(e - ceg

A Naive Upper Bound (UB):

“This upper bound is too loose!”
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m Given a known feasible schedule s with total buffer
requirement R(s):
UB(ei) < R(s)— Y LB(ej)

&j#€;

m A heuristic algorithm [Bh'96] can be used to obtain a
feasible schedule s.
e Optimal for acyclic, delayless SDF graphs, but not for
general SDF graphs.

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from
Dataflow Graphs, Kluewer Academic Publishers, 1996 J
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Tighter Upper Bounds — Technique 1

m Given a known feasible schedule s with total buffer
requirement R(s):

UB(&) <R(s)— Y LB(ej)

&j#€;

m A heuristic algorithm [Bh'96] can be used to obtain a
feasible schedule s.
e Optimal for acyclic, delayless SDF graphs, but not for
general SDF graphs.

m Edge buffer lower bound (LB) can be obtained [Bh'96]:

LB — d d>p+c—g
" | p+c—g+dmodg otherwise

g = gcd(p,¢)

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from
Dataflow Graphs, Kluewer Academic Publishers, 1996

J

-17 -



Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8

Introduction q €3 ’1
oving el

Improving (59)

MC 2 2

Scalability

Firing Count
Restriction

Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2
Graph De-

composition

Performance

Conclusions

ASP-DAC’09 - 18 -



Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8

Introduction q €3 ’1
oving el

Improving (59)

MC 2 2

Scalability

FHR @t
Restriction
Tighter Edge

Buffer Size ms;: CCAAB
g

Bounds

Technique 1
Technique 2

Graph De-
composition

Performance

Conclusions

ASP-DAC’09 - 18 -



Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8

Introduction q €3 ’1
oving el

Improving (59)

MC 2 2

Scalability

Firing Count
Restriction

ighter Ed
Butfor Sizes" ms;: CCAAB
g

= e R(s))=2 42 +16 =20

Technique 1
Technique 2

Graph De-
composition

Performance

Conclusions

ASP-DAC’09 - 18 -



Overview
Introduction

Improving
MC
Scalability

Firing Count
Restriction

Tighter Edge
Buffer Size
g
Bounds

Technique 1
Technique 2
Graph De-

composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 2:
Heavy Edges

QS < 8>1

ms;: CCAAB
e R(s1)=2+ +2 - 416/~ =20
e s is unadvisable, since e; is a "heavy edge", and we
should avoid accumulating tokens on it

- 18 -



Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8

Introduction q €3 ’1
oving el

Improving (59)

MC 2 2

Scalability

Firing Count

Restriction

Tighter Edge
Buffar Size. H S CCAAB

Upper

= e R(s))=2 42 +16 =20

Technique 1

Technique 2 H H H H n n
o e s is unadvisable, since e; is a "heavy edge", and we

S should avoid accumulating tokens on it
Performance
ms: CACAB

Conclusions

ASP-DAC’09 - 18 -



Tighter Upper Bounds — Technique 2:
Heavy Edges

Overview 8 8
Introduction q €3 '1

o el

Improving [=))
e 2 2
Scalability
Firing Count
Restriction
Tighter Edge
PuflalS ms;: CCAAB
Bounds
Technique 1 L4 R(sl) - 2 + 2 + 16 ES 20
Technique 2 H H H H n n
Graph Do e s; is unadvisable, since e3 is a heavy.edge , and we
compesition should avoid accumulating tokens on it
Performance

i ms: CACAB
Conclusions

e R()=2 " +2 +8 =12

ASP-DAC’09 - 18 -



Tighter Upper Bounds — Technique 2:
Heavy Edges ...

Overview

Introduction

Improving
MC
Scalability

Eiring Count
Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’ -19 -



Tighter Upper Bounds — Technique 2:
Heavy Edges ...

Forward Heavy Edge (FHE) —— ¢ >p1+p2+ ...+ pn

Overview c

\4

Introduction

Improving
MC
Scalability

Eiring Count
Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09 -19 -



Overview

Introduction

Improving
MC
Scalability

Eiring Count
Restriction
Tighter Edge
Buffer Size
g
Bounds
Technique 1
Technique 2
Graph De-
composition

Performance

Conclusions

ASP-DAC’09

Tighter Upper Bounds — Technique 2:

Heavy Edges ...

Forward Heavy Edge (FHE) —— ¢ >p1+p2+ ...+ pn

ey

-19 -



Tighter Upper Bounds — Technique 2:

Heavy Edges ...
Forward Heavy Edge (FHE) —— ¢ >p1+p2+ ...+ pn

Overview

Introduction

Improving

Technique 1
Technique 2

Graph De-
composition

Performance
Regular Heavy Edge (RHE)
A FHE where p(e) and d(e) are integer multiples of c(e), or
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Upper Bounds for Heavy Edges:
m If e is an FHE, we can set UB of ¢f as

max(p(er) +c(er),d(er)) + c(er)

m If e, is an BHE, we can set UB of ¢, as

max(p(ep) + c(es), d(eb)) + p(ep)

-20 -



Tighter Upper Bounds — Technique 2:
Heavy Edges ....

Upper Bounds for Heavy Edges:
Overview m If er is an FHE, we can set UB of ¢r as

Introduction

improving max(p(er) + c(er),d(ef)) + c(er)
Scalability

Firing Count
Restriction

Tighter Edge .
Buffer Size m If e, is an BHE, we can set UB of ¢, as
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Bounds
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m If ¢ is an RHE, we can set the upper bound of e, as
LB(er)
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Tighter Upper Bounds — Technique 2:

Heavy Edges

€AB €BC €CE €BD €ED €DA

Naive UB 30 12 6 12 30 60

Improved UB | 16 2 6 12 5 32
921 -
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Graph Decomposition

Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the
graph will become two separate subgraphs.
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ol and G, , we can get an optimal schedule s of G by

e firing each node by following the known optimal schedules
s1 and s, and

e firing the sink of the bridge e, as soon as possible
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Definition: Bridge

A bridge in graph theory is an edge s.t. if it is deleted, the
Overview graph will become two separate subgraphs.
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Graph De-
composition

v

Fetiaems m Given known optimal schedules s; and s, for subgraphs G;

ol and G, , we can get an optimal schedule s of G by

e firing each node by following the known optimal schedules
s1 and s, and

e firing the sink of the bridge e, as soon as possible

B Ropt(G) = Ropt(G1) + Ropt (G2) + LB(ep)

ASP-DAC’09 -22-




Outline

Overview
Introduction
Improving

MC
Scalability

Performance

Conclusions

@ Performance

ASP-DAC’09 -23-



Performance

Overview
Introduction
Improving

MC
Scalability

Performance

Conclusions

ASP-DAC’09 - 24 -



Performance

m Use SDF3 [Gelein'06], to generate random SDF graphs

Overview
Introduction
Improving

MC
Scalability

Performance

Conclusions

M. Geilen, S. Stuijk and T. Basten. SDF3: SDF for free. ACSD 2006. J

ASP-DAC’09 - 24 -



Performance

m Compare the state space
Overview optimizations
Introduction

Improving

MC

Scalability

Performance

Conclusions

M. Geilen, S. Stuijk and T. Basten

m Use SDF3 [Gelein'06], to generate random SDF graphs

size with and without our

. SDF3: SDF for free. ACSD 2006.

J

ASP-DAC’09

- 24 -



Performance

m Use SDF3 [Gelein'06], to generate random SDF graphs
m Compare the state space size with and without our
optimizations

Overview
Introduction

:\v/Tllgroving Experiment 1 2 3 4 5 6 7 8
Scalability Number of Actors | 4 6 8 10 12 14 16 18
Number of States with the original approach in [Gelein'05]
BOUND-1 (MB) 2 2 2 2 2 2 7064 26394
BOUND (MB) 13 88 115 452 193 195 216 18341
Number of States with the optimized approach in this paper
BOUND-1 (s) 2 2 2 2 2 2 1244 11111

BOUND (s) 13 64 82 114 112 92 91 4120
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M. Geilen, S. Stuijk and T. Basten. SDF3: SDF for free. ACSD 2006. J

M. Geilen, T. Basten and S. Stuijk: Minimizing buffer requirements of
synchronous dataflow graphs with model checking. DAC 2005. J
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