Improving Scalability of Model-Checking for Minimizing Buffer Requirements of Synchronous Dataflow Graphs

Nan Guan¹, Zonghua Gu², Wang Yi³, Ge Yu¹

¹Northeastern University, China

²Hong Kong University of Science and Technology, China

³Uppsala University, Swenden

ASP–DAC'09 January 18–22, 2009

Performance

Overview Introduction Improving MC Scalability

Outline

1 Overview

2 Introductio

Improving MC Scalability

- Firing Count Restriction
- Tighter Edge Buffer Size Upper Bounds
 - Technique 1
 - Technique 2
- Graph Decomposition

Performance

5 Conclusions

ASP-DAC'09

Outline

Overview

Introduction

Improving MC Scalability

Performance

Conclusions

Overview

introduction

Improving MC Scalability

- Firing Count Restriction
- Tighter Edge Buffer Size Upper Bounds
 - Technique 1
 - Technique 2
- Graph Decomposition

Performance

6 Conclusions

Overview

Introduction

- Improving MC Scalability
- Performance
- Conclusions

Synchronous dataflow (SDF)

- Also called Statically-Schedulable Dataflow (SSDF)
- Widely used in multimedia, signal processing, etc.
- Each actor invocation consumes and produces a constant number of data tokens.

Buffer Size minimization

- Memory is a scare resource in embedded systems
- NP-complete

Model-checking (MC)

- pro: obtain provably-optimal solution
- con: state space explosion limits scalability
- Contribution: improve MC scalability by exploiting SDF-specific properties

Overview

Introduction

- Improving MC Scalability
- Performance
- Conclusions

Synchronous dataflow (SDF)

- Also called Statically-Schedulable Dataflow (SSDF)
- Widely used in multimedia, signal processing, etc.
- Each actor invocation consumes and produces a constant number of data tokens.
- Buffer Size minimization
 - Memory is a scare resource in embedded systems
 - NP-complete

Model-checking (MC)

- pro: obtain provably-optimal solution
- con: state space explosion limits scalability
- Contribution: improve MC scalability by exploiting SDF-specific properties

Overview

Introduction

- Improving MC Scalability
- Performance
- Conclusions

Synchronous dataflow (SDF)

- Also called Statically-Schedulable Dataflow (SSDF)
- Widely used in multimedia, signal processing, etc.
- Each actor invocation consumes and produces a constant number of data tokens.
- Buffer Size minimization
 - Memory is a scare resource in embedded systems
 - NP-complete
- Model-checking (MC)
 - pro: obtain provably-optimal solution
 - con: state space explosion limits scalability
- Contribution: improve MC scalability by exploiting SDF-specific properties

- Overview
- Introduction
- Improving MC Scalability
- Performance
- Conclusions

- Synchronous dataflow (SDF)
 - Also called Statically-Schedulable Dataflow (SSDF)
 - Widely used in multimedia, signal processing, etc.
 - Each actor invocation consumes and produces a constant number of data tokens.
- Buffer Size minimization
 - Memory is a scare resource in embedded systems
 - NP-complete
- Model-checking (MC)
 - pro: obtain provably-optimal solution
 - con: state space explosion limits scalability
- Contribution: improve MC scalability by exploiting SDF-specific properties

Introduction

Improving MC Scalability

Performance

Conclusions

Outline

Overview

2 Introduction

Improving MC Scalability

- Firing Count Restriction
- Tighter Edge Buffer Size Upper Bounds
 - Technique 1
 - Technique 2
- Graph Decomposition

Performance

5 Conclusions

a SDF example

Overview

Introduction

Improving MC Scalability Performance Conclusions

Balance Equations:

• for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:

- $\bullet r_A \times 1 = r_C \times 3, \quad r_A \times 2 = r_B \times 3, \quad r_B \times 1 = r_C \times 2$
- solution (repetition vector): $r_A = 3, r_B = 2, r_C = 1$
- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC

a SDF example

Overview

Introduction

Improving MC Scalability Performance Conclusions

Balance Equations:

• for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:

- $\bullet r_A \times 1 = r_C \times 3, \quad r_A \times 2 = r_B \times 3, \quad r_B \times 1 = r_C \times 2$
- solution (repetition vector): $r_A = 3, r_B = 2, r_C = 1$
- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC

a SDF example

Overview

Introduction

Improving MC Scalability Performance Conclusions

Balance Equations:

• for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:

- $\mathbf{r}_A \times 1 = \mathbf{r}_C \times 3, \quad \mathbf{r}_A \times 2 = \mathbf{r}_B \times 3, \quad \mathbf{r}_B \times 1 = \mathbf{r}_C \times 2$
- solution (repetition vector): $r_A = 3, r_B = 2, r_C = 1$
- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC

a SDF example

Overview

Introduction

Improving MC Scalability Performance

Conclusions

Balance Equations:

• for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:

• $r_A \times 1 = r_C \times 3$, $r_A \times 2 = r_B \times 3$, $r_B \times 1 = r_C \times 2$

• solution (repetition vector): $r_A = 3, r_B = 2, r_C = 1$

- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC

a SDF example

Overview

Introduction

Improving MC Scalability Performance

Conclusions

Balance Equations:

• for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:

• $r_A \times 1 = r_C \times 3$, $r_A \times 2 = r_B \times 3$, $r_B \times 1 = r_C \times 2$

• solution (repetition vector): $r_A = 3, r_B = 2, r_C = 1$

- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC

a SDF example

Overview

Introduction

Improving MC Scalability Performance

Conclusions

Balance Equations:

• for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:

• $r_A \times 1 = r_C \times 3$, $r_A \times 2 = r_B \times 3$, $r_B \times 1 = r_C \times 2$

• solution (repetition vector): $r_A = 3, r_B = 2, r_C = 1$

 any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C

possible schedules: AAABBC, AABABC

a SDF example

Overview

Introduction

Improving MC Scalability Performance

Conclusions

Balance Equations:

• for each edge e: $r_{src} \times p(e) = r_{snk} \times c(e)$

For this example:

• $r_A \times 1 = r_C \times 3$, $r_A \times 2 = r_B \times 3$, $r_B \times 1 = r_C \times 2$

• solution (repetition vector): $r_A = 3, r_B = 2, r_C = 1$

- any legal schedule must contain 3 firings of A, 2 firings of B and 1 firing of C
- possible schedules: AAABBC, AABABC

Introduction

Improving MC Scalability Performance Conclusions

Total Required Buffer Size: 6+2=8

Total Required Buffer Size: 6+2=8

Total Required Buffer Size: 6+2=8

Total Required Buffer Size: 6 + 2 = 8

Total Required Buffer Size: 6+2=8

Total Required Buffer Size: 6 + 2 = 8

Total Required Buffer Size: 6+2=8

Total Required Buffer Size: 6+2=8

Introduction

Improving MC Scalability Performance Conclusions

Total Required Buffer Size: 6+2=8

State Space Representation

State Space Representation ...

Using MC to Find Minimal Buffer Size

Overview

Introduction

Improving MC Scalability Performance

Conclusions

- Verification Claim: Linear Temporal Logic (LTL) formula (for SPIN):
 - <> BufReq ≥ BOUND
 - "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."
- If proven False, then a feasible schedule has been found with buffer size requirement BufReq < BOUND.</p>
- Set BOUND = BufReq and run MC. BOUND is reduced iteratively until the LTL formula is proven True.

Overview

Introduction

Improving MC Scalability Performance

- Verification Claim: Linear Temporal Logic (LTL) formula (for SPIN):
 - SufReq ≥ BOUND
 - "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."
 - If proven False, then a feasible schedule has been found with buffer size requirement BufReq < BOUND.</p>
 - Set BOUND = BufReq and run MC. BOUND is reduced iteratively until the LTL formula is proven True.

Overview

Introduction

Improving MC Scalability

Performance

- Verification Claim: Linear Temporal Logic (LTL) formula (for SPIN):
 - <> BufReq \ge BOUND
 - "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."
- If proven False, then a feasible schedule has been found with buffer size requirement BufReq < BOUND.</p>
- Set BOUND = BufReq and run MC. BOUND is reduced iteratively until the LTL formula is proven True.

Overview

Introduction

Improving MC Scalability

Performance

- Verification Claim: Linear Temporal Logic (LTL) formula (for SPIN):
 - SufReq ≥ BOUND
 - "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."
- If proven False, then a feasible schedule has been found with buffer size requirement BufReq < BOUND.</p>
- Set BOUND = BufReq and run MC. BOUND is reduced iteratively until the LTL formula is proven True.

Overview

Introduction

Improving MC Scalability

Performance

- Verification Claim: Linear Temporal Logic (LTL) formula (for SPIN):
 - SufReq ≥ BOUND
 - "All possible schedules will eventually lead to a state where the total buffer size requirement is larger than or equal to a user-specified bound."
- If proven False, then a feasible schedule has been found with buffer size requirement BufReq < BOUND.</p>
- Set BOUND = BufReq and run MC. BOUND is reduced iteratively until the LTL formula is proven True.

Outline

Overview

Introduction

Improving MC Scalability

Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Performance

Conclusions

③ Improving MC Scalability

- Firing Count Restriction
- Tighter Edge Buffer Size Upper Bounds
 - Technique 1
 - Technique 2
- Graph Decomposition

Performance

Rationale Behind the Techniques

Overview

Introduction

Improving MC Scalability

Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Performance

Conclusions

Firing Count Restriction

- helps reduce system state space
- Tighter Edge Buffer Size Upper Bounds (UB)
 - helps reduce system state space
 - also helps reduce the number of model-checker invocations in the iterative procedure to obtain the minimum buffer size requirement
- Graph Decomposition
 - use divide-and-conquer to decompose a large problem into multiple smaller sub-problems for certain SDF graphs with a special topology

Firing Count Restriction

Firing Count Restriction ...

Overview

Introduction

Improving MC Scalability

Firing Count Restriction

Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Performance

Conclusions

- If a SDF graph has a schedule with bounded memory requirement, it must have a periodic schedule where each actor firing count is equal to its firing count in the repetition vector [Lee'87].
- To help reduce MC state space, we restrict each actor's firing count to not exceed its entry in the repetition vector

Edward A. Lee, David G. Messerschmitt: Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing. IEEE Trans. Computers 36(1): 24-35 (1987)

Tighter Upper Bounds – Technique 1

Overview

Introduction

Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds

Technique 1 Technique 2 Graph Decomposition

Performance

Conclusions

$$\underbrace{P(e)}_{d(e)} \xrightarrow{c(e)} \underbrace{P(e)}_{d(e)}$$

A Naive Upper Bound (UB):

$$UB(e) = p(e) \times r_{src}(e) + d(e)$$

This upper bound is too loose!"

ASP-DAC'09

Tighter Upper Bounds – Technique 1

Overview

Introduction

Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds

Technique 1 Technique 2 Graph Decomposition

Performance

Conclusions

$$\underbrace{P(e)}_{d(e)} \xrightarrow{c(e)} \underbrace{P(e)}_{d(e)}$$

A Naive Upper Bound (UB):

$$UB(e) = p(e) \times r_{src}(e) + d(e)$$

"This upper bound is too loose!"

Overview Introduction Improving Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition Performance Conclusions

Tighter Upper Bounds – Technique 1 ...

Given a known feasible schedule s with total buffer requirement R(s):

$$UB(e_i) \leq R(s) - \sum_{e_j \neq e_i} LB(e_j)$$

- A heuristic algorithm [Bh'96] can be used to obtain a feasible schedule s.
 - Optimal for acyclic, delayless SDF graphs, but not for general SDF graphs.

Edge buffer lower bound (*LB*) can be obtained [Bh'96]:

$$LB = \begin{cases} d & d > p + c - g \\ p + c - g + d \mod g & \text{otherwise} \end{cases}$$
$$g = gcd(p, c)$$

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from Dataflow Graphs, Kluewer Academic Publishers, 1996

Overview Introduction Improving

Scalability

Upper Bounds Technique 1 Technique 2 Graph Decomposition Performance Conclusions

Firing Count Restriction

Tighter Edge Buffer Size Tighter Upper Bounds – Technique 1 ...

Given a known feasible schedule s with total buffer requirement R(s):

$$UB(e_i) \leq R(s) - \sum_{e_j
eq e_i} LB(e_j)$$

- A heuristic algorithm [Bh'96] can be used to obtain a feasible schedule *s*.
 - Optimal for acyclic, delayless SDF graphs, but not for general SDF graphs.

■ Edge buffer lower bound (*LB*) can be obtained [Bh'96] $LB = \begin{cases} d & d > p + c - g \\ p + c - g + d \mod g & \text{otherwise} \\ g = gcd(p, c) \end{cases}$

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from Dataflow Graphs, Kluewer Academic Publishers, 1996

Overview Introduction Improving

Scalability

Upper Bounds Technique 1 Technique 2

Graph Decomposition Performance Conclusions

Firing Count Restriction

Tighter Edge Buffer Size

Tighter Upper Bounds – Technique 1 ...

Given a known feasible schedule s with total buffer requirement R(s):

$$UB(e_i) \leq R(s) - \sum_{e_j
eq e_i} LB(e_j)$$

- A heuristic algorithm [Bh'96] can be used to obtain a feasible schedule *s*.
 - Optimal for acyclic, delayless SDF graphs, but not for general SDF graphs.
- Edge buffer lower bound (*LB*) can be obtained [Bh'96]:

$$LB = \begin{cases} d & d > p + c - g \\ p + c - g + d \mod g & \text{otherwise} \end{cases}$$
$$g = gcd(p, c)$$

S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, Software Synthesis from Dataflow Graphs, Kluewer Academic Publishers, 1996

- Overview Introduction
- introduction
- Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1
- Technique 2 Graph De-
- composition
- Performance
- Conclusions

■ *s*1: C C A A B

- $R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20$
- s₁ is unadvisable, since e₃ is a "heavy edge", and we should avoid accumulating tokens on it

•
$$R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12$$

- Overview
- Introduction
- Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1
- Technique 2 Graph De-
- composition
- Performance
- Conclusions

■ *s*₁: C C A A B

- $R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20$
- s₁ is unadvisable, since e₃ is a "heavy edge", and we should avoid accumulating tokens on it
- *s*₂: C A C A E
 - $R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12$

- Overview
- Introduction
- Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1
- Technique 2 Graph De-
- composition
- Performance
- Conclusions

- *s*₁: C C A A B
 - $R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20$
 - s₁ is unadvisable, since e₃ is a "heavy edge", and we should avoid accumulating tokens on it
- *s*₂: CACAE
 - $R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12$

- Overview
- Introduction
- Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1
- Technique 2 Graph Decomposition
- Performance
- Conclusions

- *s*₁: C C A A B
 - $R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20$
 - s₁ is unadvisable, since e₃ is a "heavy edge", and we should avoid accumulating tokens on it

■ *s*₂: CACA

• $R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12$

- Overview
- Introduction
- Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1
- Technique 2 Graph Decomposition
- Performance
- Conclusions

- *s*₁: C C A A B
 - $R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20$
 - s₁ is unadvisable, since e₃ is a "heavy edge", and we should avoid accumulating tokens on it
- *s*₂: C A C A B

• $R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12$

- Overview Introduction
- . .
- Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds
- Technique 1 Technique 2
- Graph Decomposition
- Performance
- Conclusions

- *s*₁: C C A A B
 - $R(s_1) = 2(e_1) + 2(e_2) + 16(e_3) = 20$
 - s₁ is unadvisable, since e₃ is a "heavy edge", and we should avoid accumulating tokens on it
- *s*₂: C A C A B

•
$$R(s_2) = 2(e_1) + 2(e_2) + 8(e_3) = 12$$

- Overview Introduction Improving <u>Scalability</u> Firing Count Restriction Tighter Edge Buffer Size Bounds Technique 1 Technique 2 Graph Decomposition Performance Conclusions

Upper

A BHE where c(e) and d(e) are integer multiples of p(e)

Technique 1 Technique 2 Graph Decomposition

Restriction Tighter Edge Buffer Size Upper Bounds

Overview Introduction Improving MC Scalability Firing Count

Performance

Conclusions

Regular Heavy Edge (RHE)

A FHE where p(e) and d(e) are integer multiples of c(e), or A BHE where c(e) and d(e) are integer multiples of p(e)

Graph Decomposition Performance

Overview Introduction Improving MC Scalability Firing Count

Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2

Conclusions

Regular Heavy Edge (RHE)

A FHE where p(e) and d(e) are integer multiples of c(e), or A BHE where c(e) and d(e) are integer multiples of p(e)

Upper Bounds for Heavy Edges:

Overview

Introduction

Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Performance

Conclusions

If e_f is an FHE, we can set UB of e_f as $\max(p(e_f) + c(e_f), d(e_f)) + c(e_f)$

If e_b is an BHE, we can set UB of e_b as

 $\max(p(e_b) + c(e_b), d(e_b)) + p(e_b)$

If e_r is an RHE, we can set the upper bound of e_r as LB(e_r)

Upper Bounds for Heavy Edges:

• If e_f is an FHE, we can set UB of e_f as

 $\max(p(e_f) + c(e_f), d(e_f)) + c(e_f)$

If e_b is an BHE, we can set UB of e_b as

 $\max(p(e_b) + c(e_b), d(e_b)) + p(e_b)$

If e_r is an RHE, we can set the upper bound of e_r as LB(e_r)

Overview

Introduction

Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2

Graph Decomposition

Performance

Upper Bounds for Heavy Edges:

• If e_f is an FHE, we can set UB of e_f as

$$\max(p(e_f) + c(e_f), d(e_f)) + c(e_f)$$

■ If e_b is an BHE, we can set UB of e_b as $max(p(e_b) + c(e_b), d(e_b)) + p(e_b)$

If e_r is an RHE, we can set the upper bound of e_r as LB(e_r)

Overview

Introduction

Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Performance

Upper Bounds for Heavy Edges:

If e_f is an FHE, we can set UB of e_f as

 $\max(p(e_f) + c(e_f), d(e_f)) + c(e_f)$

If e_b is an BHE, we can set UB of e_b as $\max(p(e_b) + c(e_b), d(e_b)) + p(e_b)$

 If e_r is an RHE, we can set the upper bound of e_r as LB(e_r)

Overview

Introduction

Improving MC Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Performance

Performance

	е _{АВ}	e _{BC}	еcE	e _{BD}	e _{ED}	е _{DA}
Naive UB	30	12	6	12	30	60
Improved UB	16	2	6	12	5	32

Overview Introduction Improving MC Scalability Firing Count

Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition Performance Conclusions

Graph Decomposition

Definition: Bridge

- Given known optimal schedules s_1 and s_2 for subgraphs G_1 and G_2 , we can get an optimal schedule s of G by
 - firing each node by following the known optimal schedules s_1 and s_2 , and
 - firing the sink of the bridge e_b as soon as possible
 - $R_{opt}(G) = R_{opt}(G_1) + R_{opt}(G_2) + LB(e_b)$

Overview Introduction Improving

Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition Performance Conclusions

Graph Decomposition

Definition: Bridge

Performance

Conclusions

Overview Introduction Improving

Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Graph Decomposition

Definition: Bridge

- Given known optimal schedules s_1 and s_2 for subgraphs G_1 and G_2 , we can get an optimal schedule s of G by

Performance

Conclusions

Overview

Introduction Improving

Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Graph Decomposition

Definition: Bridge

- Given known optimal schedules s_1 and s_2 for subgraphs G_1 and G_2 , we can get an optimal schedule s of G by
 - firing each node by following the known optimal schedules s_1 and s_2 , and
 - firing the sink of the bridge e_b as soon as possible

Performance

Conclusions

Overview

Introduction Improving

Scalability Firing Count Restriction Tighter Edge Buffer Size Upper Bounds Technique 1 Technique 2 Graph Decomposition

Graph Decomposition

Definition: Bridge

- Given known optimal schedules s_1 and s_2 for subgraphs G_1 and G_2 , we can get an optimal schedule s of G by
 - firing each node by following the known optimal schedules s_1 and s_2 , and
 - firing the sink of the bridge eb as soon as possible
- $R_{opt}(G) = R_{opt}(G_1) + R_{opt}(G_2) + LB(e_b)$

Overview Introduction

Improving MC Scalability

Performance

Conclusions

Outline

Overview

Introduction

Improving MC Scalability

- Firing Count Restriction
- Tighter Edge Buffer Size Upper Bounds
 - Technique 1
 - Technique 2
- Graph Decomposition

Performance Conclusions

Scalability

Overview Introduction

Performance

Use SDF³ [Gelein'06], to generate random SDF graphs
 Compare the state space size with and without our optimizations

M. Geilen, S. Stuijk and T. Basten. SDF³: SDF for free. ACSD 2006.

M. Geilen, T. Basten and S. Stuijk: Minimizing buffer requirements of synchronous dataflow graphs with model checking. DAC 2005.

Overview Introduction

Improving MC Scalability

Performance

Conclusions

Performance

Use SDF³ [Gelein'06], to generate random SDF graphs
 Compare the state space size with and without our optimizations

M. Geilen, S. Stuijk and T. Basten. SDF³: SDF for free. ACSD 2006.

M. Geilen, T. Basten and S. Stuijk: Minimizing buffer requirements of synchronous dataflow graphs with model checking. DAC 2005.
Overview Introduction

Improving MC Scalability

Performance

Conclusions

Performance

- Use SDF^3 [Gelein'06], to generate random SDF graphs
- Compare the state space size with and without our optimizations

M. Geilen, S. Stuijk and T. Basten. SDF³: SDF for free. ACSD 2006.

M. Geilen, T. Basten and S. Stuijk: Minimizing buffer requirements of synchronous dataflow graphs with model checking. DAC 2005.

Overview Introduction

Improving MC Scalability

Performance

Conclusions

Performance

- Use SDF³ [Gelein'06], to generate random SDF graphs
- Compare the state space size with and without our optimizations

Experiment	1	2	3	4	5	6	7	8	
Number of Actors	4	6	8	10	12	14	16	18	
Number of States with the original approach in [Gelein'05]									
BOUND-1 (MB)	2	2	2	2	2	2	7064	26394	
BOUND (MB)	13	88	115	452	193	195	216	18341	
Number of States with the optimized approach in this paper									
BOUND-1 (s)	2	2	2	2	2	2	1244	11111	
BOUND (s)	13	64	82	114	112	92	91	4120	

M. Geilen, S. Stuijk and T. Basten. SDF³: SDF for free. ACSD 2006.

M. Geilen, T. Basten and S. Stuijk: Minimizing buffer requirements of synchronous dataflow graphs with model checking. DAC 2005.

Overview Introduction

Improving MC Scalability

Performance

Conclusions

Outline

1 Overview

Improving MC Scalability

- Firing Count Restriction
- Tighter Edge Buffer Size Upper Bounds
 - Technique 1
 - Technique 2
 - Graph Decomposition

Performance

Overview Introduction Improving

MC Scalability

Performance

Conclusions

Conclusions

Presented a set of techniques for improving MC efficiency

- Actor firing count restriction
- Tighter upper bounds for edge buffer size
- Graph decomposition

 Performance evaluation shows their effectiveness in reducing state space