A Reverse-Encoding-based on-chip AHB Bus Tracer for Efficient Circular Buffer Utilization

Presenter : Fu-Ching Yang

Fu-Ching Yang, Cheng-Lung Chiang, and Ing-Jer Huang Department of Computer Science and Engineering National Sun Yat-Sen University

Tracing is important in SoC monitoring and debugging

- Debugging in SoC
 - To embed the hardware tracer to capture and compress the signals in realtime
 - Store the data in the on-chip trace memory (circular buffer)

Pre-T/Post-T traces are important in SoC monitoring and debugging

- There are two types of trace
 - Post-Triggering (Post-T) trace

Trace after the start point

Pre-Triggering (Pre-T) trace

3

Problems with Pre-T trace in the forward encoding compression method

Forward encoding differential compression

 Traditional approaches (called *Forward encoding*) do not support compression onto a circular buffer well

Outline

- Related work
 - Periodical triggering
- Proposed reverse encoding
 - Concept
 - Applying on the differential and slice compression
 - Applying on the dictionary-based compression
- Experiment
- Summary

Related work – Pre-T tracers

- 1. Pre-T trace, no compression
 - Conventional logic analyzer
 - LEON3 AHBTRACE
- 2. Pre-T trace with compression, but low compression ratio
 - Compression based on data filtering
 - Branch/target filtering
 - Mann, ARM ETM, and NEXUS interface
 - Run-length encoding
 - Some logic analyzers
 - Low compression ratio
- 3. Pre-T trace, with good compression ratio
 - Lin et al. propose periodical triggering [6]

Related work: Periodical Triggering

Periodical triggering concept

- Divide the trace into small segments
- Isolate the encoding relationship between segments

Proposed reverse encoding

- Record the uncompressed data after the referenced, encoded data
- It can be applied to any compression algorithm encoded based on data relationship

The proposed bus tracer supporting both Pre-T/Post-T trace

- Apply the reverse encoding algorithm on the forward encoding tracer
 - Differential compression
 - Slice compression
 - Dictionary-based compression

Applying reverse encoding

- Related data are adjacent
 - Differential compression
 - Slice compression

Reverse encoding based differential compression

- Switch the two input
- Output the last data in uncompressed format
- Significant small hardware overhead

Reverse encoding based slice compression

Time	Original address	Forward encoding	Reverse encoding
t	0x0300_6600	0x0300_6600	0x600
t+1	0x0300_6120	0x120	0x20
t+2	0x0300_6130	0x30	0x300_6130
t+3	0x0080_4020	0x080_4020	0x020
t+4	0x0080_4400	0x400	0x0080_4400

- Switch the two input
- Output the last data in uncompressed format
- Significant small hardware overhead

Forward encoding dictionary-based approach

- Dictionary-based compression
 - LZ compression

Applying reverse encoding

- Delay the output of the Miss data
 - The Miss data output only if they are replaced
 - The initial table is output
 - The decreased compression ratio can be ignored

14

Reverse encoding based Dictionary-based compression

- The Miss data output only if they are replaced
- Output the dictionary table at the end
- Significant small hardware overhead

Experiment

- A reverse-encoding-based on-chip AHB bus tracer is implemented
 - Support both Pre-T and Post-T trace
- 5 C-based benchmarks
 - Loop and recursive intensive
- Experiment environment: ARM EASY

Compression ratio of forward encoding and reverse encoding

- The compression ratio is the same to the forward encoding
 - Reverse encoding only re-arrange the order
 - The compression ratio of the dictionary-based compression drops slightly
 - The dictionary table size is relatively smaller than the total trace size

Benchmark	Instruction address		Data value	
	Forward encoding	Reverse encoding	Forward encoding	Reverse encoding
Fibonacci (loop)	88.12%	87.70%	56.61%	56.61%
Prime	89.40%	89.01%	27.27%	27.27%
Knight Problem	85.22%	84.74%	68.45%	68.45%
Fibonacci (rec.)	87.39%	87.11%	30.25%	30.25%
Hanoi towers	87.04%	87.01%	42.68%	42.68%
Average	87.42%	87.10%	41.76%	41.76%

17 Dictionary size: 16 entries

Comparison with other Pre-T tracers

- Our tracer achieves the longest trace cycle in Pre-T trace mode
 - 100 % circular utilization
 - Maintain the same compression ratio as forward encoding
 - 22% better trace cycle than the periodical triggering approach

	Existing industrial case (AHBTRACE)	Periodical triggering tracer	Our reverse encoding tracer
Effective trace buffer utilization	100%	93.8%	100%
Effective traced cycles	90	358 (3.98x)	437 (4.86x)

Assume 8 segments for periodical triggering
Circular buffer size: 1 KB

Comparison with other Pre-T tracers

- Our reverse encoding tracer has significant small hardware overhead
 - Only 6% hardware overhead
 - The periodical triggering tracer incurs 46% hardware overhead
 - Ping-pong organization
 - Complex circular buffer management

	Base tracer	Periodical triggering tracer	Our reverse encoding tracer
Area (Gate count)	41,768	60,783 (+46%)	44,447 (+6%)
Frequency (MHz)	500	500	500

•Base tracer: forward encoding based, only support Post-T trace

- •Dictionary size: 16 entries
- •Under TSMC 0.13 μ m technology

19

Synthesis example in 3D graphics SoC platform

- The gate count is not huge in a typical SoC
 - 44 k gate count
- It is not the critical path

	3D Graphics SoC	Bus tracer
Area (Gate count)	~700,000 gates	44,447 gates
Max frequency (MHz)	233 MHz	500 MHz

Use 0.13 μ m technology with TSMC cell library

Summary

- Traditional forward encoding faces difficulties when wrapping around occurs in Pre-T trace
- A reverse encoding algorithm is proposed
 - It applies to data compression based on data relationship
 - Solve the problem caused by wrapping around
 - Maintain the same compression ratio as the forward encoding
- A realtime on-chip AHB bus tracer supporting both the Post-T/Pre-T trace
 - Significant small hardware overhead (6%)
 - Improve the previous approach significant
 - 22% better trace cycle
 - 40% less hardware overhead
- Future work
 - Extend it to other advance bus, e.g., AXI and OCP.

Thank you!

Backup Slides

Drawbacks of periodical triggering

- Inefficient circular buffer utilization n-1
 - Limited to $\frac{n-1}{2}$
- Decreased compression ratio
 - More initial uncompressed data
- Hugh hardware overhead

Circular buffer

Packet format

25

Circular buffer management

Decompression flow

