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Optimizing Energy Consumption at
Algorithmic Level

Optimizing energy consumption:
• Many HW mechanisms available (DVFS, DPM, ...)
• Important in system level design
• Used in earlier stages of SW development phase

However, fundamental concepts have not yet been completed.
• Differences from performance optimization?
• Metrics?
• Programming logics and structure?
• Dataflow?

More precisely, we cannot answer: 
Which, either Quicksort or Heapsort,
is more energy optimal?
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Target and Objective

• Target
– DVS systems
– Deadline constraints
– Algorithmic level

• Objective
– Clarify the difference between energy optimization 

and performance optimization
– Propose a measure for energy consumption
– Study a case of algorithmic energy optimization
– Answer “Quicksort vs Heapsort. 

Which is more energy optimal?”
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IntraDVS: Basic Concepts

• The selected branch decides 
the remaining cycles
– Ex. Either block B or block C 

is executed

A

B C

D

Related work: Control flow graph

2Mcycle3Mcycle

Voltage/frequency 
can be reduced d

d1 d2

Our approach: Data flow graph

d
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Divide Divide

10Mcycle 8Mcycle

Voltage/frequency can 
be reduced

• The sizes of divided subproblems
decide the remaining cycles

Ex.1 Ex.2
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Review of Quicksort

• Workload variation slack time
– WCEC: δw(n) ∝ n2

– ACEC:  δa(n) ∝ n log n

• Problem: WCEC is too big! 
Heapsort does not have much workload variance.
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Remaining Predicted Execution Cycles

• WCEC

d

d1 d2

Divide

δw(d): WCEC of processing d

Dividing time + Worst of sum of WCECs

c(d)        +     max(δw(d1) + δw(d2))
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Comparison of Remaining WCET of qsort

• Remaining WCET w/o concatenation:

• In ordinary libraries, the smaller 
problem is firstly processed
– PRO: Memory consumption is bound 

by O(log n)
– CON: Remaining WCET does not 

rapidly decrease (early division 
technique)

HighRapidLarger

MiddleModerateLargest

LowSlowSmallest

Memory UsageDecrease of RET

[             ,           ,        ]

[           ,         ,        ,     ]

Our approach:
Processing larger problems

(Approximation)
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Energy-efficient Hybrid Sorting Algorithm

• Energy Efficiency = Original Algo. + Optimization

• Our solution: Hybrid sort = Quicksort + Heapsort
– First, Quicksort: fast on average

• Early division technique is used.
• Performance is very high for almost all of the input.

– At worst case, changed into Heapsort; WCEC is bounded.
⇒ The energy efficiency of the sorting algorithm can be 

optimized on DVS systems.

Very goodΘ(n log n)Hybrid

BadΘ(n log n)Heapsort

Very goodO(n2)Quicksort

Energy OptimizationOriginal Algo.
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Normalized Operator numbers of
Sorting Programs

The data was obtained on a MIPS R5000 processor with 512 KB of secondary cache and 64 
MB of main memory, using version 7.2.1 of the Silicon Graphics MIPSpro C++ compiler.



10

Normalized Energy of Sorting Programs Using 
DVS

62.6%
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Effects of the Stack Size on Energy Consumption 
Using SVS

[           ,         ,        ]

Stack size
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Effects of the stack size on energy consumption

• A tradeoff between energy and memory
• The greater stack size it has, the more energy is 

saved.
• Energy savings saturated to about 25%
• This saturation occurs at line y = 3000 x 0.85
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Measure for Evaluating Energy Consumption of 
Algorithm

• SVS: voltage scheduling before execution
• The optimal voltage of each task

= The minimum voltage to finish the task
execution exactly at the deadline

Lemma (Optimal SVS)  For SVS without scaling bound,
An algorithm of a given task is optimal on average iff

δw
2δa

is minimum.

Implications:
• Deadline does not affect the comparison of two algorithms
• Firstly, WCET δw should be reduced
• Secondly, ACET δa
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Proof

1. Let D be deadline.
2. The execution of frequency δw/D finishes exactly on 

deadline.
3. The corresponding power consumption is P(δw/D), 

which is the smallest in the case that f = δw/D because 
of the monotonicity of P.

4. The execution time is the number of cycles X divided 
by frequency, i.e., X/(δw/D).

5. Thus, energy consumption becomes P(δw/D) · DX/δw
6. Now, we are comparing the different algorithms under 

the same deadline, and therefore D is constant.
7. The average energy consumption is proportional to the 

average of (δw)2 X.

CAVEAT: If frequencies range over [fmin,fmax], 
the objective function becomes (δw)2 · max(Dfmin, min(Dfmax,δa))
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Normalized Energy of Sorting Programs Using 
SVS



16

Comparison of Energy Consumption of Sorting:
A Case Study

• Question:
– What is an energy efficient sorting on SVS systems?

• Our Answer†:
– When the input size is small, 

Energy optimization ≒ Performance optimization
– When the input size is large,

• Implications:
– The proposed metrics enables this comparison
– Energy optimization ≠ Performance optimization
– Fastest on average ≠ Energy optimal on average

Heap < Hybrid << Quick
Heap < Hybrid <<< Quick

Worst Energy
Worst Exec. Time

Hybrid << Heap << Quick
Quick = Hybrid << Heap

Average Energy
Average Exec. Time

†Only consider Quicksort,
Heapsort and Hybrid sort
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Concluding Remarks

• Algorithmic energy efficiency is meaningful.
• We propose

– Energy efficient sorting algorithm
– A measure for evaluating the optimal energy of algorithms
– IntraDVS strategies using data flow information
⇒ We can discuss which, either Quicksort or Heapsort, is more 

energy efficient.

• Future work
– How to write energy efficient programs (partially published)
– Compare energy efficiency of other algorithms (ongoing)
– Expose a tradeoff with energy (ongoing)


