
1

Analyzing and Optimizing Energy Efficiency of
Algorithms on DVS Systems:

--A First Step towards Algorithmic Energy Minimization--

TETSUO YOKOYAMA

Nagoya University

Joint work with Gang Zeng,
Hiroyuki Tomiyama and Hiroaki Takada

ASPDAC 2009

2

Optimizing Energy Consumption at
Algorithmic Level

Optimizing energy consumption:
• Many HW mechanisms available (DVFS, DPM, ...)
• Important in system level design
• Used in earlier stages of SW development phase

However, fundamental concepts have not yet been completed.
• Differences from performance optimization?
• Metrics?
• Programming logics and structure?
• Dataflow?

More precisely, we cannot answer:
Which, either Quicksort or Heapsort,
is more energy optimal?

3

Target and Objective

• Target
– DVS systems
– Deadline constraints
– Algorithmic level

• Objective
– Clarify the difference between energy optimization

and performance optimization
– Propose a measure for energy consumption
– Study a case of algorithmic energy optimization
– Answer “Quicksort vs Heapsort.

Which is more energy optimal?”

4

IntraDVS: Basic Concepts

• The selected branch decides
the remaining cycles
– Ex. Either block B or block C

is executed

A

B C

D

Related work: Control flow graph

2Mcycle3Mcycle

Voltage/frequency
can be reduced d

d1 d2

Our approach: Data flow graph

d

d’1 d’2
1Mcycle 9Mcycle 4Mcycle4Mcycle

Divide Divide

10Mcycle 8Mcycle

Voltage/frequency can
be reduced

• The sizes of divided subproblems
decide the remaining cycles

Ex.1 Ex.2

5

Review of Quicksort

• Workload variation slack time
– WCEC: δw(n) ∝ n2

– ACEC: δa(n) ∝ n log n

• Problem: WCEC is too big!
Heapsort does not have much workload variance.

11

2 2

4 4

7 7

8 8 10 10

35

6

9 11

12

13
sorted

unsorted

The smaller problems
are firstly processed.

6

Remaining Predicted Execution Cycles

• WCEC

d

d1 d2

Divide

δw(d): WCEC of processing d

Dividing time + Worst of sum of WCECs

c(d) + max(δw(d1) + δw(d2))

7

Comparison of Remaining WCET of qsort

• Remaining WCET w/o concatenation:

• In ordinary libraries, the smaller
problem is firstly processed
– PRO: Memory consumption is bound

by O(log n)
– CON: Remaining WCET does not

rapidly decrease (early division
technique)

HighRapidLarger

MiddleModerateLargest

LowSlowSmallest

Memory UsageDecrease of RET

[, ,]

[, , ,]

Our approach:
Processing larger problems

(Approximation)

8

Energy-efficient Hybrid Sorting Algorithm

• Energy Efficiency = Original Algo. + Optimization

• Our solution: Hybrid sort = Quicksort + Heapsort
– First, Quicksort: fast on average

• Early division technique is used.
• Performance is very high for almost all of the input.

– At worst case, changed into Heapsort; WCEC is bounded.
⇒ The energy efficiency of the sorting algorithm can be

optimized on DVS systems.

Very goodΘ(n log n)Hybrid

BadΘ(n log n)Heapsort

Very goodO(n2)Quicksort

Energy OptimizationOriginal Algo.

9

Normalized Operator numbers of
Sorting Programs

The data was obtained on a MIPS R5000 processor with 512 KB of secondary cache and 64
MB of main memory, using version 7.2.1 of the Silicon Graphics MIPSpro C++ compiler.

10

Normalized Energy of Sorting Programs Using
DVS

62.6%

11

Effects of the Stack Size on Energy Consumption
Using SVS

[, ,]

Stack size

12

Effects of the stack size on energy consumption

• A tradeoff between energy and memory
• The greater stack size it has, the more energy is

saved.
• Energy savings saturated to about 25%
• This saturation occurs at line y = 3000 x 0.85

13

Measure for Evaluating Energy Consumption of
Algorithm

• SVS: voltage scheduling before execution
• The optimal voltage of each task

= The minimum voltage to finish the task
execution exactly at the deadline

Lemma (Optimal SVS) For SVS without scaling bound,
An algorithm of a given task is optimal on average iff

δw
2δa

is minimum.

Implications:
• Deadline does not affect the comparison of two algorithms
• Firstly, WCET δw should be reduced
• Secondly, ACET δa

14

Proof

1. Let D be deadline.
2. The execution of frequency δw/D finishes exactly on

deadline.
3. The corresponding power consumption is P(δw/D),

which is the smallest in the case that f = δw/D because
of the monotonicity of P.

4. The execution time is the number of cycles X divided
by frequency, i.e., X/(δw/D).

5. Thus, energy consumption becomes P(δw/D) · DX/δw
6. Now, we are comparing the different algorithms under

the same deadline, and therefore D is constant.
7. The average energy consumption is proportional to the

average of (δw)2 X.

CAVEAT: If frequencies range over [fmin,fmax],
the objective function becomes (δw)2 · max(Dfmin, min(Dfmax,δa))

15

Normalized Energy of Sorting Programs Using
SVS

16

Comparison of Energy Consumption of Sorting:
A Case Study

• Question:
– What is an energy efficient sorting on SVS systems?

• Our Answer†:
– When the input size is small,

Energy optimization ≒ Performance optimization
– When the input size is large,

• Implications:
– The proposed metrics enables this comparison
– Energy optimization ≠ Performance optimization
– Fastest on average ≠ Energy optimal on average

Heap < Hybrid << Quick
Heap < Hybrid <<< Quick

Worst Energy
Worst Exec. Time

Hybrid << Heap << Quick
Quick = Hybrid << Heap

Average Energy
Average Exec. Time

†Only consider Quicksort,
Heapsort and Hybrid sort

17

Concluding Remarks

• Algorithmic energy efficiency is meaningful.
• We propose

– Energy efficient sorting algorithm
– A measure for evaluating the optimal energy of algorithms
– IntraDVS strategies using data flow information
⇒ We can discuss which, either Quicksort or Heapsort, is more

energy efficient.

• Future work
– How to write energy efficient programs (partially published)
– Compare energy efficiency of other algorithms (ongoing)
– Expose a tradeoff with energy (ongoing)

