Array Like Runtime Reconfigurable MIMO Detector for 802.11n WLAN:A design case study

> Pankaj Bhagawat Rajballav Dash Gwan Choi Texas A&M University-CollegeStation

Outline

- Background
- MIMO Detection as a Tree Search
- Related Work
- Fixed Sphere Decoder and Architecture
- Architectural Space Exploration
- Integration Issues in a Communication System

Standards using MIMO and Requirements

- LAN: 802.11n
- WAN: WiMax, LTE etc
- 1Gbps systems like WIGWAM
- All support multiple modulation and coding schemes (MCS)
- Very high throughput requirements at BaseBand
- Ease of integration

Ant₁

- Spatial Multiplexing is especially attractive
- The transmitter is able to send out multiple data streams on the same frequency
- More throughput without extra BW

Ant_n

MIMO System

- Binary data is encoded with a rate R code
- Coded bits grouped (in $\log_2 \eta$) and mapped to a ηary QAM
- symbol
- Independent QAM symbols transmitted over multiple antennas

MIMO System

- Each Rx antenna sees *weighted superposition* of (or interference from) signals
- from all Tx antennas
 - $Rx_1 \text{ sees } s_1h_{11} + s_2h_{21} \text{ and } Rx_2 \text{ sees } s_1h_{12} + s_2h_{22}$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$$

- h_{11}, h_{12} ... are random channel gains (fading)
- Noise samples n_1 and n_2 further corrupts the interference laden signals
- MIMO detection involves removing the interference in presence of noise
- Knowledge of channel gains is assumed (provided by channel estimator)

MIMO System

- Can be written in a matrix form
 y = Hs + n
- Best estimate (ML) \hat{s} of s is such that it minimizes $\|\mathbf{y} \mathbf{Hs}\|^2$
- **H=QR**, **R** is upper triangular matrix. Pick **s** such that $\|\hat{\mathbf{y}} \mathbf{Rs}\|^2$ is minimized

del.

Related Work

- K-best algorithm takes a BFS approach and retains K "best" paths at each level of the tree
 - Fixed throughput can be achieved
 - Sorting is very expensive
 - Large memory to store intermediate results depending on the value of "K"
 - The value of "K" is modulation scheme dependent=> difficult to achieve high resource utilization in a reconfigurable environment
- DFS based approach : Searches the tree in a depth first manner
 - Highly random throughput, throughput not high enough
 - Hard to parallelize and pipeline due to a feedback loop
- Linear Detectors are low complexity but has poor BER/FER

FSD Algorithm

Metric Computation Unit (MCU)

ADDER

Key Features

- Systolic type array of processing elements
- On the fly reconfiguration possible
- Highly pipeline-able
- Data and control flow is forward flowing
- Fixed throughput for a given modulation scheme
- Very high resource utilization
 - MCUs *matched* to level of the tree
 - Pipeline is not broken

MIMO-OFDM System(Interface)**

MIMO-OFDM System

- MOS=MIMO-OFDM Symbol
- A detector core has to process 52 tones in 3.6microsecs.

Detector Array

Parallelism (m)

• Processing time for 52 tones, T_p , is given by $T_p = 52 \lceil \eta / m \rceil C_d / (k+1)$

- η depends on the modulation format used, $\eta = 4(\text{QPSK})$, $16(16-\Omega AM)$, 64(64-QAM).
- C_d is the combinational delay of the un-pipelined array.

i=2

• In actual simulations T_p = 3000ns (to account for 15-20% pessimism factor).

Power, Delay, and Area Estimation

- Power consumption mainly due to logic and clock network
- Clock network is modeled as a symmetrical mesh.
 - Global clock network power was estimated using HSPICE
 - Local power is estimated using capacitive load due to number of flops driven by a local clock buffer
- Synopsys DC was used to estimate logic power, area, and timing of the detector
- DC retiming utility was used to introduce and retime the pipes

Architectural Exploration for Low Area

- Find (m,k) such that it meets the throughput requirements for all modes and has minimum area
- 64-QAM is most intensive=>find (m,k) to meet throughput requirement for it
- M=3, and k=8 is able to meet the requirement with lowest area

Architectural Exploration for Low Power

- Power consumption profiles differ with the modulation modes
- Power consumption has to be optimized over all the modes
- Find (m,k) such that the aggregate power is minimized and detector still meet the throughput requirements

Architectural Exploration for Low Power

- Aggregate power Pow_{agg} = Prob(QPSK)*Pow(QPSK)+ Prob(16QAM)*Pow(16QAM)+ Prob(64QAM)*Pow(64QAM)
- All the probabilities can be assumed =1/3, since there is no a-priori knowledge
- Pow_{aaq} as a function of (m,k) is shown in the figure
 - Not all points meet the throughput req.
 - Admissible points are shown as stems.
 - m=4 and k=5 => lowest power while meeting throughput req.

Results

Design Parameters	Area Optimized	Power Optimized
Target Tech. Library	Nangate 45nm PDK	Nangate 45nm PDK
Pipeline Stages (k)	8	5
Parallelism (m)	3	4
Gate Equivalent	58.2k	67.7k
Power Consumption	11.91mW	9.7mW
Frequency: QPSK	38.8MHz	18MHz
Frequency: 16-QAM	116.3MHz	71.8MHz
Frequency: 64-QAM	426.6MHz	287.3MHz
Throughput		
Requirement: QPSK	115.6Mbps	115.6Mbps
Throughput		
Achieved: QPSK	155Mbps	144Mbps
Throughput		
Requirement: 16-QAM	231.1Mbps	231.1Mbps
Throughput		
Achieved: 16-QAM	310.13Mbps	287.2Mbps
Throughput		
Requirement: 64-QAM	346.7Mbps	346.7Mbps
Throughput		
Achieved: 64-QAM	465.38Mbps	430.95Mbps

OUR ASIC IMPLEMENTATION DETAILS

Conclusion & Future Work

- First design pushes for least area
- Second one tries to achieve least power
- Detector is configurable depending the modulation scheme used
- Future work will focus on architectures to support different sized MIMO systems(2x2,3x3,4x4 etc), this finds application in a multi-protocol device or SDR

Thank You!!