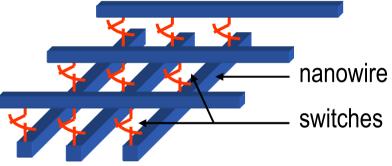
Defect-Aware Thresholder in the Sense Amplifier of Nanowire Crossbar Memories

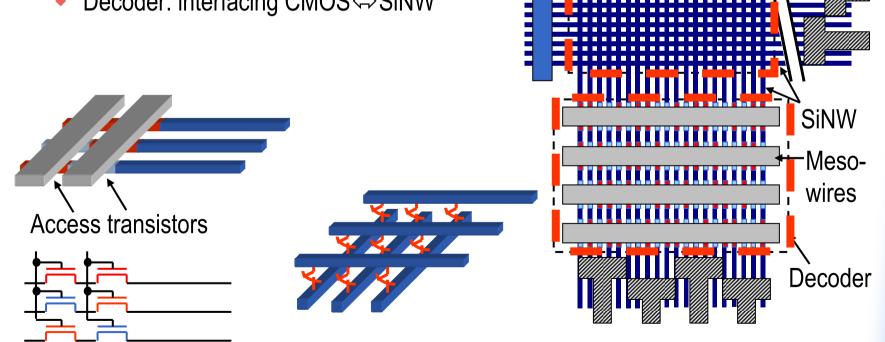
14th Asia and South Pacific Design Automation Conference – ASPDAC January 22, 2009 – Yokohama, Japan


> M. Haykel Ben Jamaa, David Atienza Yusuf Leblebici, Giovanni De Micheli

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Motivation

- Silicon nanowire crossbar circuits are a promising post-CMOS candidate:
 - Higher density
 - Regular organization
 - Multiple functions

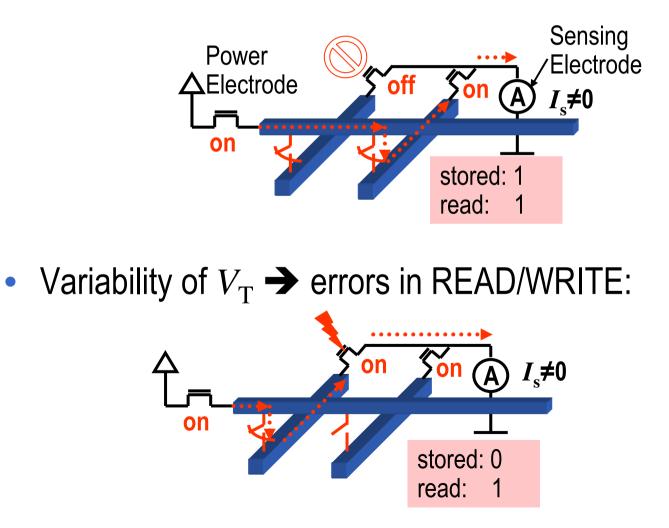

- Interfacing the nanowire crossbars and the rest of the CMOS chip is still challenging:
 - Bridging the scales is not reliable
- Crossbar circuits need special test procedures
 - Decoder test is required

Outline

- Introduction
- Decoder Test
- Current Variability Model
- Simultation Results
- Conclusions

Organization of Nanowire Crossbars

- Two parts of the crossbar circuit [DeHon'03]:
 - Crosspoints: functional region
 - Decoder: interfacing CMOS⇔SiNW

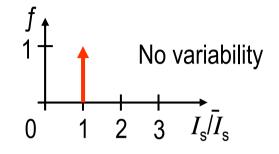


Nanowire Decoders

- Task of the decoder: unique addressing of every nanowire by the outer CMOS circuit.
- Matching the sub-lithographic to lithographic pitch is technologically expensive.
- Cost-efficient and CMOS-compatible decoders generally provide a stochastic addressing.
 - Unpredicted number of nanowires with a given address: axial [DeHon'03], radial [Savage'06], random contact decoder [Hogg'06]
 - Unpredictable threshold voltage (V_T) of access transistors: axial, mask-based [Beckman'05], gate-all-around decoders [Ben Jamaa'07]

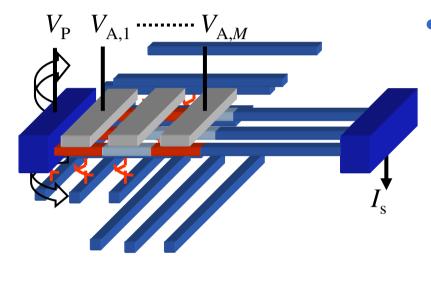
Decoder Variability

• Current-based memory operations [Cerofolini'07]

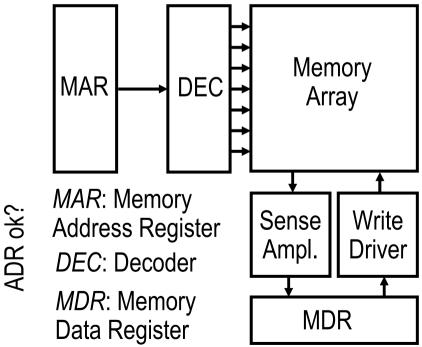


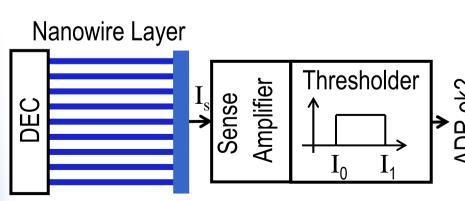
Testing Nanowire Decoders

- Variability of $V_{\rm T} \rightarrow$ pattern sensitivity faults
 - Expensive functional testing [Abadir'83, Adams'03].
 - Efficient algorithms for crossbar memories?
- Reducing memory test complexity by first testing decoder
- Challenges:
 - How can we test nanowire array decoders?
 - What are the thresholder design constraints?
 - How do design and test mutually influence on each other?

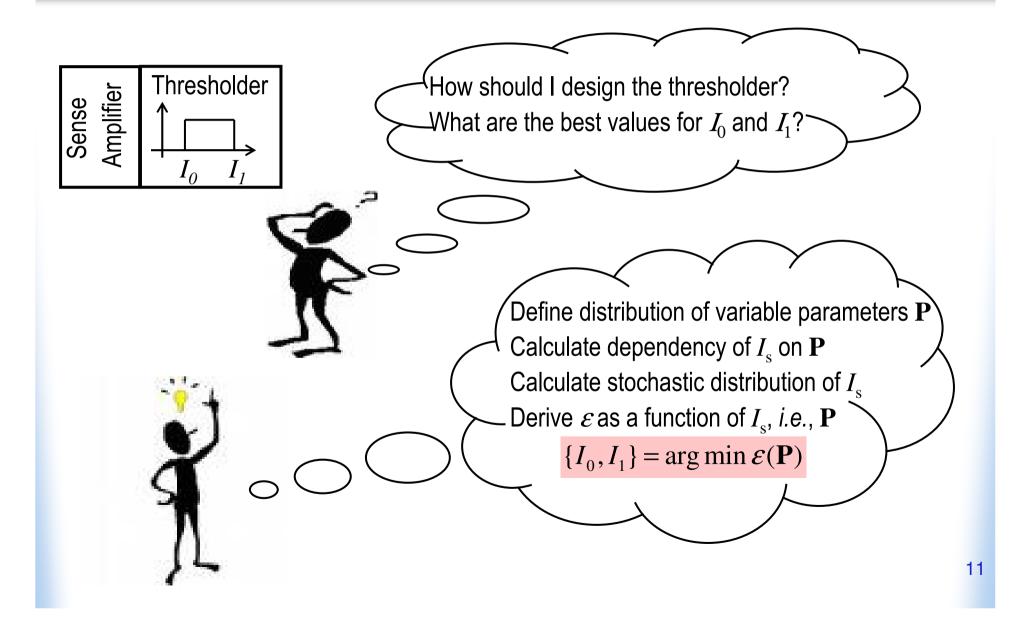

Variability-Induced Decoder Errors

- In the absence of variability, sensed current I_s fixed value \bar{I}_s
- With high variability, *I*_s follows a stochastic distribution *f*:
 - Single NW addressed, but current lower than noise level
 - Single NW addressed, but current higher than level of 2 NWs



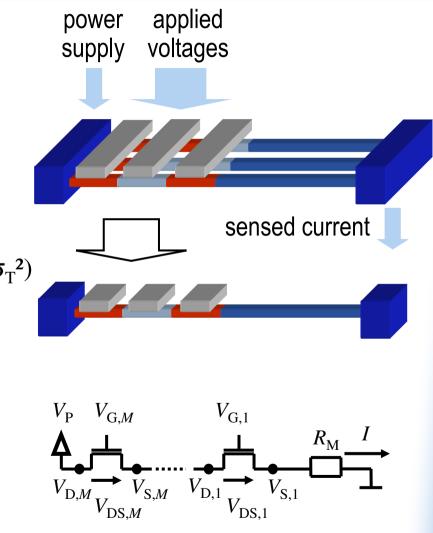

Bootstrap Decoder Test

- Linear complexity
- No additional physical resources



Test Quality

- Thresholder must identify absence of addressed NWs:
 - Maximize $Pr_1 = Pr \{I_s < I_0, \text{ given that: } I_s \text{ delivered by } = 0 \text{ NW} \}$
- Thresholder must identify uniquely addressed NWs:
 - Maximize $Pr_2 = Pr \{I_0 \le I_s \le I_1, \text{ given that: } I_s \text{ delivered by } = 1 \text{ NW} \}$
- Thresholder must identify unintentionally addressed NWs:
 - Maximize $Pr_3 = Pr \{I_1 < I_s, \text{ given that: } I_s \text{ delivered by } \ge 2 \text{ NW}\}$
- The best test maximizes all 3 events → test quality improves by minimizing test error defined as:


$$\mathcal{E} = 1 - \Pr_1 \times \Pr_2 \times \Pr_3$$

Test-Aware Thresholder Design

Variability of Circuit Under Test

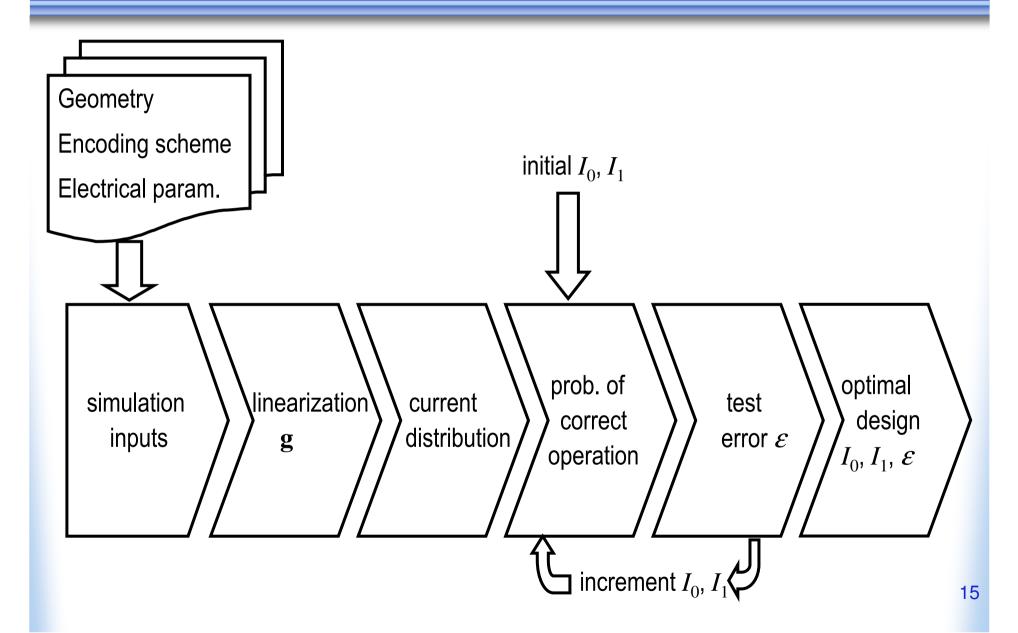
- Circuit under test:
 - Full NW layer
 - Defect-free case: 1 NW
 - Circuit reduced to a series of M transistors and a resistor R_M
- Model parameters:
 - Gaussian parameters: $V_{T,i} \sim N(V_T^{OP}, \sigma_T^2)$
 - Model-fixed parameter: R_M
 - Extrinsic parameter: $V_{\rm P}$
- Variability model:
 - Sensitivity analysis: $I=I^{OP}+\delta I$
 - Linearization: $\partial I = \mathbf{g}^{\mathsf{T}} \cdot \partial V_{\mathsf{T}}$
 - Small signal conductance vector g

Current Components

- Array of *N* nanowires
- Current through the NW array:
 - $I_{\rm u}$: Useful signal caused by a single addressed NW
 - $I_{\rm in}$: Intrinsic noise caused by $N_{\rm in}$ non-addressed NWs
 - I_{dn} : Defect-induced noise caused by N_{dn} badly addressed NWs

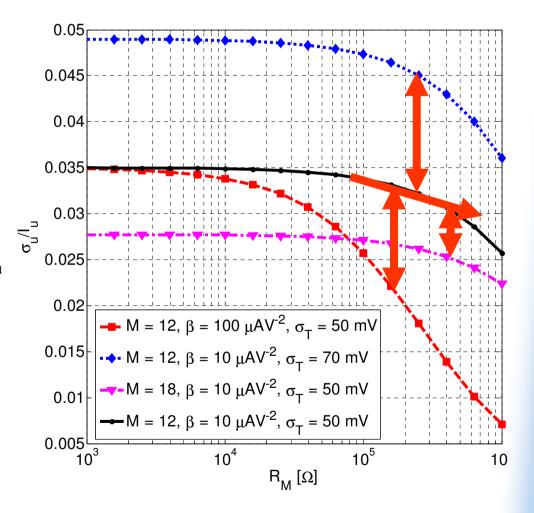
Distribution of Current Components

- Useful signal:
 - *I*_{on}: on-current


$$I_{\rm u} \propto N(I_{\rm on}, \|\mathbf{g}\|^2 \sigma_{\rm T}^2)$$

- Intrinsic noise:
 - *I*_{off}: off-current

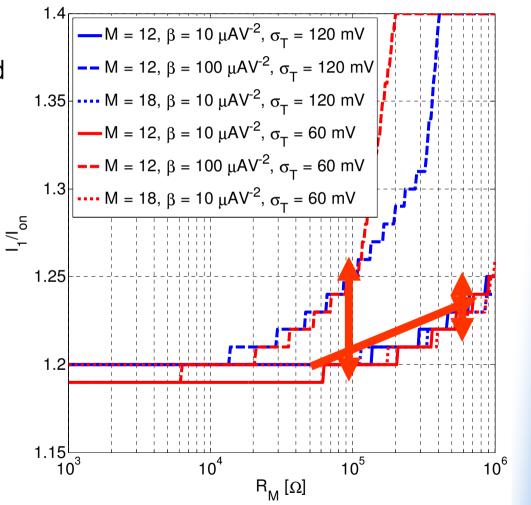
$$I_{\rm in} = N_{\rm in} \times I_{\rm off}$$


- Defect-induced noise:
 - Defects in NW *i* described by \mathbf{s}_i
 - N_{di} defective NWs shift mean value, and increase std-deviation

Simulation Flow

General Signal Variation

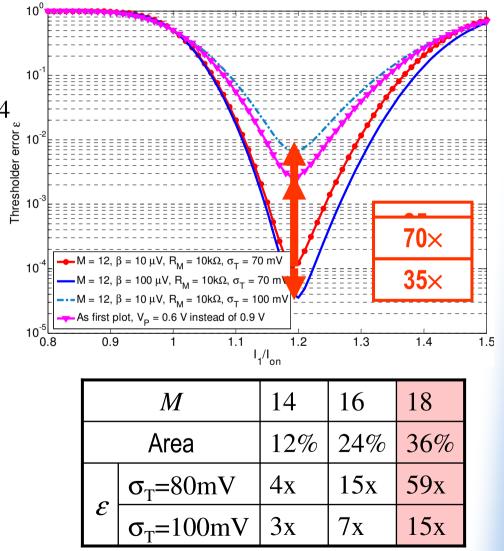
- Distribution of I_u and I_{di} with similar qualitative behaviours
- $I_{\rm u}$ distribution improves with:
 - $R_{\rm M}$ \uparrow : $\sigma_{\rm u}$ decreases faster than $\bar{I}_{\rm u}$
 - $\beta \uparrow$: higher current injection
 - $\sigma_{\rm T}\downarrow$: $\sigma_{\rm u}$ scales linearly with $\sigma_{\rm T}$
 - $M \uparrow$: $\sigma_{\rm u} \sim 1/\sqrt{M} \downarrow$ faster than $\bar{I}_{\rm u}$


Thresholder Parameters

- Influence of parameters:
 - β: weak 10× → 4%
 - $R_{\rm M}$: stronger only if combined with $\beta \rightarrow$ unlikely
 - M: weaker

 $I_1 \approx 1.2 \times I_{\rm on}$

- Fixing range of I_0 :
 - Not too small to filter noise
 - Not too large to detect useful signal


 $I_0 \approx 0.7 \times I_{\rm on}$

Test Error

- Typical parameters:: *E* ~10⁻⁴
 Impact of parameters on *E*
- Impact of parameters on \mathcal{E} .

Parameter	I^{OP}	δI	Impact
$V_{ m P}\downarrow$	\rightarrow	_	8
$\sigma_{_{ m T}}$ \uparrow	_	1	8
β ↑	1	_	0
$M\uparrow$	\downarrow	$\downarrow\downarrow$	\odot

Conclusions

- Decoder test necessary to reduce crossbar memory test complexity caused by decoder variability
- Stochastic and perturbative current model used to quantify test error
- Robust thresholder against technology and parameter variation
- Typical test error ~10⁻⁴, better test with higher supply voltage, stronger access devices and redundant decoder design

