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Motivation

• Silicon nanowire crossbar circuits are a promising post-
CMOS candidate:
� Higher density
� Regular organization
� Multiple functions

• Interfacing the nanowire crossbars and the rest of the 
CMOS chip is still challenging:
� Bridging the scales is not reliable

• Crossbar circuits need special test procedures
� Decoder test is required

nanowire

switches
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Outline

• Introduction

• Decoder Test

• Current Variability Model

• Simultation Results

• Conclusions
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Organization of Nanowire Crossbars

• Two parts of the crossbar circuit 
[DeHon’03 ]:
� Crosspoints: functional region
� Decoder: interfacing CMOS�SiNW

Decoder

Meso-
wires

SiNW

Access transistors
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Nanowire Decoders

• Task of the decoder: unique addressing of every nanowire by the 
outer CMOS circuit.

• Matching the sub-lithographic to lithographic pitch is technologically 
expensive.

• Cost-efficient and CMOS-compatible decoders generally provide a 
stochastic addressing.
� Unpredicted number of nanowires with a given address: axial [DeHon’03 ], 

radial [Savage’06], random contact decoder [Hogg’06]
� Unpredictable threshold voltage (VT) of access transistors: axial, mask-based 

[Beckman’05], gate-all-around decoders [Ben Jamaa’07]
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Decoder Variability

• Current-based memory operations [Cerofolini’07]

• Variability of VT � errors in READ/WRITE:

A

on

onoff

Sensing 
ElectrodePower 

Electrode
Is≠0

stored: 1 
read:    1

A

on

onon Is≠0

stored: 0 
read:    1
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Testing Nanowire Decoders

• Variability of VT � pattern sensitivity faults 
� Expensive functional testing [Abadir’83, Adams’03].

� Efficient algorithms for crossbar memories?

• Reducing memory test complexity by first testing decoder

• Challenges:
� How can we test nanowire array decoders?

� What are the thresholder design constraints?

� How do design and test mutually influence on each other?
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Variability-Induced Decoder Errors

• In the absence of variability, sensed 
current Is fixed value Īs

• With high variability, Is follows a 
stochastic distribution ƒ:
� Single NW addressed, but current 

lower than noise level

� Single NW addressed, but current 
higher than level of 2 NWs

ƒ

Is/Is0 1 2 3

1 High variability 

ƒ

Is/Is0 1 2 3

1 No variability 

Is

I1

Is

I0
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Bootstrap Decoder Test
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• Advantages:
� Linear complexity

� No additional physical resources
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Test Quality

• Thresholder must identify absence of addressed NWs:
� Maximize Pr1 = Pr {Is < I0, given that: Is delivered by = 0 NW}

• Thresholder must identify uniquely addressed NWs:
� Maximize Pr2 = Pr {I0 ≤ Is ≤ I1, given that: Is delivered by = 1 NW}

• Thresholder must identify unintentionally addressed NWs:
� Maximize Pr3 = Pr {I1 < Is, given that: Is delivered by ≥ 2 NW}

• The best test maximizes all 3 events � test quality improves by 
minimizing test error defined as:

ε = 1 – Pr1× Pr2 × Pr3
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Test-Aware Thresholder Design

I
0

I
1

Thresholder

Se
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e 
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er

Define distribution of variable parameters P
Calculate dependency of Is on P
Calculate stochastic distribution of Is

Derive ε as a function of Is, i.e., P
)(minarg},{ 10 Pε=II

How should I design the thresholder?
What are the best values for Ι0 and Ι1?
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Variability of Circuit Under Test

• Circuit under test:
� Full NW layer

� Defect-free case: 1 NW

� Circuit reduced to a series of M
transistors and a resistor RM

• Model parameters:
� Gaussian parameters: VT,i ~ N(VT

OP,σT²)

� Model-fixed parameter: RM

� Extrinsic parameter: VP 

• Variability model:
� Sensitivity analysis: I=IOP+ δI

� Linearization: δI=gT·δVT

� Small signal conductance vector g

VP VG,M VG,1

RM

VDS,M VDS,1

I

VD,M VS,M VD,1 VS,1

applied 
voltages

power 
supply

sensed current
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Current Components

• Array of N nanowires

• Current through the NW array:
� Iu: Useful signal – caused by a single addressed NW

� Iin: Intrinsic noise – caused by Nin non-addressed NWs

� Idn: Defect-induced noise – caused by Ndn badly addressed NWs
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Distribution of Current Components

• Useful signal:
� Ion: on-current

• Intrinsic noise:
� Ioff: off-current

• Defect-induced noise:
� Defects in NW i described by s

i

� Ndi defective NWs shift mean 
value, and increase std-deviation
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Simulation Flow

simulation 
inputs

linearization
g
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General Signal Variation

• Distribution of Iu and Idi with 
similar qualitative behaviours

• Iu distribution improves with:
� RM ↑: σu decreases faster than Īu
� β ↑: higher current injection

� σT ↓: σu scales linearly with σT

� M ↑ : σu ~ 1/√M ↓ faster than Īu
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M = 12, β = 10 µAV-2, σ
T
 = 120 mV

M = 12, β = 100 µAV-2, σ
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 = 120 mV

M = 18, β = 10 µAV-2, σ
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 = 120 mV
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T
 = 60 mV
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Thresholder Parameters

• Influence of parameters:
� β: weak 10× � 4%

� RM: stronger only if combined 
with β � unlikely

� M: weaker

• Fixing range of I0:
� Not too small to filter noise

� Not too large to detect useful 
signal

I1 ≈ 1.2 × Ion

I0 ≈ 0.7 × Ion
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As first plot, V
P
 = 0.6 V instead of 0.9 V

Test Error

• Typical parameters:: ε ~10-4

• Impact of parameters on ε:

59x15x4xσT=80mV

15x7x3xσT=100mV
ε

36%24%12%Area

181614M

–↑β ↑

↓↓

↑

–

δI

–σT ↑

↓M ↑

↓VP ↓

ImpactIOPParameter

25××××
70××××

35××××
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Conclusions

• Decoder test necessary to reduce crossbar memory test 
complexity caused by decoder variability

• Stochastic and perturbative current model used to quantify 
test error

• Robust thresholder against technology and parameter 
variation

• Typical test error ~10-4, better test with higher supply 
voltage, stronger access devices and redundant decoder 
design



Thank you...


