Challenges to EDA System from the View Point of Processor Design and Technology Drivers

Mitsuo Saito

Chief Fellow / VP Engineering
Toshiba Corporation Semiconductor Company
Contents

- Semiconductor Technology and Microprocessor Trend
- Our Processor Design Experiences
 - Early Struggles for Processor Design
 - Meet with Playstation
 - Development of Graphics and Emotion Engine for Playstation 2
 - Towards Cell Broadband Engine (Cell)
 - Development of Cell Processor
 - Targets of Cell Processor
 - Towards SpursEngine
 - What is SpursEngine
- Makimoto’s Wave and What we have done?
 - Historical Analysis of Development
- Today’s Situation and Challenge to EDA system
 - What is necessary now?
 - What will happen next?
- Summary
Still Semiconductor Roadmap is Working: Moore’s Law

One Billion Transistors per Chip in 2010 (250Mgates)

From SEMATECH Data
First Micro Processor was born in 1971

- Intel 4004
- DIP16P, Address bus 12 bit, Data bus 4 bit
- Clock 741KHz
- P-MOS 10um
- Tr. 2300
- 11/15/1971

Waves to Standardization and Customization

Mass production (Standardization) : Factory efficiency

1957: Transistor, Diode
1967: IC Invention
1977: CAD Revolution
1987: ASIC
1997: SW+HW Engine
2007: Software Centric Design Cell/B.E.
2017: System on a Chip

Severe competition
Price down
10 million/month
Surplus supply
Price slump
Memory in Asia
MPU in US
X86 + Standard
PC Chipset
Emotion
Engine
Cell/B.E.

Various & small production (Customization) : Customer satisfaction

1957: Killby patent
1967: TV, Calculator, Watch
1977: MOS GA
1987: New product development race
1997: Design crisis
2007: Co-design of dedicated H/W & S/W
2017: Power Consumption?

Source : Makimoto’s Wave

Copyrighth © 2009 Toshiba Corporation, All rights reserved.
AI Workstation (1986)

- Maybe the last paper and pencil based Design!
- Processor was a board based
- About 100 sets were sold, and reasonable revenue
AI Processor Chip (1988)

- Silicon Compiler “Genesil” was Used

Performance 12 MIPS
@Dhrystone

Registers 32bit × 32

Buses 32bit × 2

Bus Cycle 1 Clock min

Clock Freq. 16MHz Max

Process 1.2um 2 Layer
Metal CMOS

Tr.Cnt 113K

Package 299pin PGA
First TRON Processor TX1 (1988)

• Proprietary HDL (H²DL) was used

Performance 5 MIPS

Registers 32bit × 16

Buses 32bit × 2

Bus Cycle 2 Clock min

Clock Freq. 25MHz Max

Process 1.0um 2 Layer Metal CMOS

Package 155-pin PGA
Incomplete GL Processor (1990)

- Proprietary HDL (H^2DL) was used

Freq. 65MHz
Inst. 4 Way SuperScalar
Dhry. 100MIPS
Linpack 66MFlops (Single)
 35MFlops (Double)
Power 3.3V/5~6W
Process 0.5 μm CMOS
Package 448pin PGA
Tr.cnt 2.5M
RISC Processor R8000 (1993)

• Verilog was used

Jointly developed with Silicon Graphics Inc.
R8000 Based Computer Board

Designed by Silicon Graphics Inc.
Embedded RISC Processor TX39(1995)

• Verilog was used

• First Embedded RISC
• 32bit MIPS Architecture
• 40MHz/43MIPS
• 500mw
• 4KB I cache / 1KB D cache
• 4K page MMU (32 entry)
“GSP” in 1988

- Gouraud Shading
 10M Pixel/sec
 30K Polygons/sec
- Flat Shading
 160M Pixel/sec
- Lines
 1M Lines/sec
- Clock
 20MHz
- Technology
 1.2μm CMOS
- Transistor Count
 130K Transistors
- Chip size
 11.5 × 11.3mm
- Package
 144pin Flat Package
Molecular model image by GSP

- 5160 Polygons
- 6.4 frames/Sec
- 8 bit/pixel
- 16bit Z Buffer
First Generation Playstation

Playstation Shipment History

From: http://www.scei.co.jp/corporate/data/
Playstation was very successful, though

- Original business model was not making money from Hardware but Software license. In reality, could make money even from hardware, mainly because of semiconductor cost down.

- 3D graphics could get very good reputation. But It’s performance was not good enough yet. Emotion of the characters couldn’t be presented!

- By considering game console life cycle, hardware performance should be competitive at least for a few years

- An epoch-making graphic chip was the key for the next generation

- Embedded DRAM technology based graphics was employed

- Main processor had to have enough performance correspond to very high performance graphics. Special processor had to be developed
“Graphics Synthesizer” (GS)

- 16.6mm × 16.8mm
- 32Mbit Embedded DRAM
- 0.25 μm
- 47.7 M transistors
- Designed by SONY, SCE and Toshiba
- Fabricated by SONY
Rendering performance Trend

- Game Console
- Personal Computer
- Graphics Work Station

Polygon/sec

- PlayStation
- Dream Cast
- N64(?)
- PS2

100,000
1,000,000
10,000,000
100,000,000
How Emotion Engine was born?

- Toshiba could develop and provide the graphics chip for the first generation Playstaion. However, processor chip was provided by US company.
- Some engineers in Toshiba semiconductor division, began to consider to propose not only graphics but main processor for next generation Playstation, and it was called “Emotion Engine” afterwards.
- Started to approach to SCEI a few month after first generation Playstation was launched (12/3/1994).
- SCEI was interested in proposed Geometry Engine architecture, and started a joint technical investigation.
- After main concept of Emotion Engine was accomplished, Toshiba team has started to develop the processor portion at the Silicon Valley office in 1996, before an agreement was done.
15.02mm x 15.04mm
Frequency: 300MHz
Transistors: 13.5M
Power: 18Watts
Design Rule: 0.25um
Gate Length: 0.18um
Designed by SCE and Toshiba
Fabricated by Toshiba
Emotion Engine Block Diagram

System Bus 128-bit

CPU

10ch DMAC

IPU

VPU0

VPU1

External Memory

Peripherals

128

128

VU0

Inst. Mem. 4KB
Data Mem. 4KB

VIF0

VU1

Inst. Mem. 16KB
Data Mem. 16KB

VIF1

EFU

to Rendering Engine (GS LSI)

System Bus 128-bit

COP1

FPU

128bit Processor Core

I$ D$ SP-RAM

COP2

VU0

CPU

VU1

Inst. Mem. 16KB

Data Mem. 16KB

VIF0

VIF1

EFU

GIF

Mem. Interface

I/O Interface

128-bit

TOSHIBA
Leading Innovation

Copyright © 2009 Toshiba Corporation, All rights reserved.
Emotion Engine Peak Performance

- Integer Performance (GIPS)
- Bus Bandwidth (Gbyte/Sec)
- Floating Point Performance (GFLOPS)
Emotion Engine Development History

- Spring 1997: Joint Development Agreement was done (Schedule was defined)
- Spring 1998: Design Completion has been delayed because of many Bugs of CPU and not enough speed
 - Had to report Six month delay from the original schedule
- Spring 1998: Reorganize and enhance development team (82 engineers from Toshiba Japan), and Reset the Target date and specification
 - #1 Design Completion 7/1998
 - Chip size=17x14.1mm²
- Aug. 1998: EE#1 Design completion (8 month Delay)
 - Relaxation of the target frequency (300MHz=>200MHz)
 - Agreed to Relax voltage and temperature constraint
- Oct. 1998: Shipped the first sample and SCE started the system evaluation
- Dec. 31 1998: Shipped the software developable revised samples
- Feb. 1999: Presented at the conference (ISSCC), fair reputation
- Mar. 1999: Next generation Playstation technical overview was presented at PlayStation Meeting 1999, and big impact on all over the world!
 EE#2 Design completed as scheduled and achieved 300MHz Target
 EE#3 Shrunken version (0.18um) development has been started
Timing Closure

With 0.25/0.18 um design rule, controlling interconnect delay has become significant task in LSI design projects.

Key is “quick timing analysis and feedback to RTL and floor plan”.

Designer is able to do “what-if” analysis.
Timing Design Flow

- RTL Design
- Floor Plan
- Wire Load Estimation
- Logic Synthesis
- Place & Route
- Repeater Insertion
- IPO & ECO
- Post-layout Timing Analysis
- Pre-layout Timing Analysis
- Automated Clock Buffer Tuning
- Quick Turnaround 15.4 hours
- Accurate pre-layout timing analysis
- Well Controlled Repeater Insertion
- Clock Skew < 116ps
- Yes
- No

Tape Out!
Timing Closure - Results -

The number of timing error paths vs. iterations, showing applied partitioning and wire load estimation, reconsidered partition size. The maximum value of timing error and the number of timing error paths for pre- and post-layout stages are indicated.

Design Start --> Iterations --> time --> Tape Out
Clock Skew Management

- Clock skew must be minimized for
 - the maximum clock rate,
 - evading a race condition.

- Automated Clock design, e.g. CTS, is established in Standard Cell rich ASIC.

- In Contrast, half of EE is occupied by custom blocks (CB’s). Manual tuning is time-consuming.

- We developed an automated clock tuning method.
Playstation2

From Wikipedia
Beyond Playstation2

Jan. 1999 : The Investigation of the processor for the next-generation Playstation started internally in Toshiba

- At first, investigated the possibility to develop in Silicon Valley
- Investigated IBM as a partner, they were not interested so much at first

From the experience of Playstation2

- We didn’t have to use the existing processor architecture, because Playstation can have enough volume to be a standard by itself
- From DVD capability experience, It will not be only a game console but the center for the entertainment in home
- Broadband network will be popular and have very big impact

Basic concept of the next generation processor

- Not just for Game console, but should be useful in various applications
- So, it must be scalable
- The real-time computation will be the key for gaming and networking
- New computer architecture should be employed for the new world

Development Team

- By talking directly from Kutaragi-san to IBM, SCEI, IBM, and Toshiba have agreed to set up the joint development team
- We have agreed to develop next generation general purpose processor, and three company join the project, totally even share of the resource and the right
Cell BE Development Project

- Established main campus in IBM Austin
 - For the quick startup
 - Reserve excellent engineers

- Multiple sites were mandatory
 - Overcome management difficulty by frequent tele-conference
 - Network infrastructure was very effective for the information sharing

- Joint Development team has been established
 - Each part was consist of mixture of three companies engineers
 - For the good communication to collaborate smoothly
 - Necessary also for the technical transfer to each company

- After target was clarified, development was relatively smooth
 - Quick termination of culture friction was achieved
 - Flexible resource allocation was possible
Cell Block Diagram

PowerPC Processor Element (PPE)
CPU core based on 64-bit PowerPC architecture, suitable for general programming

Synergistic Processor Element (SPE)
Simple SIMD processor core (suitable for media processing)

Element Interconnect Bus (EIB)
A broadband high speed internal ring bus which connects all the elements inside Cell

High-speed memory (XDR)
XDR I/F 2 Channels

Element Interconnect Bus (EIB)
A broadband high speed internal ring bus which connects all the elements inside Cell

Cell, GPU, Etc.

Flex IO
Broadband 2 FlexIO I/O bus interfaces

I/O

PPE: PowerPC Processor Element
SPE: Synergistic Processor Element
MFC: Memory Flow Controller
LS: Local Storage

* Trademarks of Rambus, Inc.
Cell BE Major Development Topic

- Apr. 2000: Architecture investigation has been started among three companies
 - Big culture gap, and lot of friction
 - Various candidates were investigated, and concluded almost same as present one
- Mar. 2001: Public announcement of Joint development
 - Started project by setting the campus in Austin
- Sep. 2001: Toshiba has started to investigate the function of Peripheral chip
- Apr. 2004: Cell BE first sample was accomplished and worked!
- Feb. 2005: First technical presentation at ISSCC conference
 - Big impact all over the world
- Aug. 2005: Toshiba presented peripheral chip and SPE asign software idea
- Oct. 2005: Toshiba demonstrated at CEATEC exhibition
 - One of the biggest impact demonstration
 - All major TV station mentioned in the news program
- Apr. 2006: Toshiba started to provide Cell BE development set
- Sep. 2006: IBM won a Cell BE based super computer for the national research Lab.
- Nov. 2006: SCEI launched Playstation3 with Cell BE
Cell BE (SPU) Design History

- STI Design Center Open
- HLD (High Level Design) Exit (macro I/F fix)
 - basic instruction VHDL running at unit level
 - basic instruction VHDL running at core
 - VHDL complete (functional)
 - VHDL complete (pervasive)
 - Gold (function)
 - Gold (pervasive)

- Debug/Timing Tune
- RIT

- Timing slack
 - -200ps
 - -100ps
 - -75ps
 - -50ps
 - -25ps
Each Reference model for SPU Development phase

- ISA Definition
- Micro Architecture Definition
- RTL Implementation
- Physical Implementation
- Validation of the ISA completeness
- Performance analysis
- RTL verification
- Test case generator
- Expected value generator
- Applications that use the reference model

Common Reference Model
SPU Verification Strategy

Coverage Based Verification

- Test items are written as coverage events
- Executes simulation random test cases until all the coverage events are hit.
 - Random instruction sequences
 - Random external transactions
- The checkers check SPU logic correctness while simulation
- Coverage files are generated as a simulation results
Synergistic Processor Element Feature

- New architecture for the data processing
 - Media and floating point computation
- RISC type instruction set
 - High level language oriented
- SIMD based instruction scheme
 - 128 bit width Parallel execution (e.g. 4x32bit)
- Large 128bit width 128 entry register file
- 256KB Local store, not Cache
- Rich performance monitoring capability

PPE: Power Processor Element
SPE: Synergistic Processor Element
LS: Local Storage
Cell BE positioning as a Processor

- Media Performance enhancement by adding media instructions
- Performance improvement relative to the frequency/CPI
- 64-bit Media Instruction
- 128-bit Media Instruction
- Too much Integer Performance
- Video quality and size are not enough yet
- I can't feel performance difference even higher frequency

PC Processor

Video quality and size are not enough yet

Cell BE

Copyright © 2009 Toshiba Corporation, All rights reserved.
Cell BE Proposes New Computer Direction

- **New computer direction proposed by Cell BE**
 - To show hardware feature as is to the user
 - Program must be written by considering HW structure and memory size
 - Need knowledge about HW
 - Instead, let user know what is going on in the computer
 - Easier performance tuning
 - Especially for realtime system
 - Overwhelming cost performance is achieved
 - Very Small SPE sometimes provide twice of performance of PC processor

- **Maybe new direction since RISC is proposed**
 - More than 20 years ago
Real-time Face Tracking

- Camera captures the face of the person facing the “mirror”, and in real-time, the rendered image is projected in the “mirror”.

Virtual Make-up

Virtual Hair Style
Hand Gesture User Interface

- Operate products using hand gestures (hand position, motion)
 - Deviceless remote control.
 - Applicable for a variety of daily life objects.

- Three hand share can be recognized

- GUI Control by recognized image

Hand gesture controlled media player equipment prototype
Trend of HW→SW

- **1946** ENIAC (Programmable Military)
- **1950** EDVAC (Programmable Military)
- **1952** Main Frame
- **1960** Mini Computer Process Control
- **1965** General Purpose (money)
- **1970** Calculator Personal Use
- **1980** Signal Processing (Voice)
- **1990** Multi-window WS Two Dimensional Graphics
- **1990** PC General Purpose Computation
- **2000** TV/DVD/PC Image Processing (MPEG)
- **2010** Game/PC Three Dimensional Graphics
- **2010** HDTV/HDDVD HD Image Processing
- **2010** CELL

Required Performance/Cost

- **1950** For Personal Application
- **1960** DSP Signal Processing (Voice)
- **1970** TV/DVD/PC Image Processing (MPEG)
- **1980** PC General Purpose Computation
- **1990** Multi-window WS Two Dimensional Graphics
- **2000** TV/DVD/PC Image Processing (MPEG)
- **2010** Game/PC Three Dimensional Graphics
- **2010** HDTV/HDDVD HD Image Processing
- **2010** CELL

© 2009 Toshiba Corporation, All rights reserved.
48 Streams (MPEG2) Decode Demo

- MPEG2 (About 4Mbps) • 720 x 480
- Read out 48 streams from HDD and Decode
- Shrink to 1/3 and arranged to one picture for displaying on the TV
Hard to Find Customers in this Field

So, by Focusing on Video Application for PC!
SpursEngine™ Block Diagram

- **SPE 1.5Ghz**
- **SPE 1.5GHz**
- **SPE 1.5GHz**
- **SPE 1.5GHz**

Host CPU
- DMAC
- PCI-ex I/F
- SCP (controller)
- Mem Cont.

PCI-Express
- Max 4 lanes
- In: 1GB/s
- Out: 1GB/s

XDR DRAM
- 6.4 GB/s (1 pcs XDR)
- ~ 12.8 GB/s (2 pcs XDR)

EIB (Element Interconnect Bus)

Advanced Applications by Quad GHz Core

Full-HD Video Codec by HW-IP

Video CODECs
- MPEG-2: MP@HL support
- H.264: High Profile@Level 4.1 support
 - max. 1920x1080 60i/24p, 1280x720 60p

- XDR™ DRAM is a trademark of Rambus Inc. in the United States and other countries.
Emergence of HD Contents

- High Definition (HD) era has been quickly emerging. For instance, video content from digital terrestrial broadcasting, digital video cameras, and optical disks are all HD ready.

HD contents require much more processing power than SD contents.

- HD needs 6 times higher bandwidth than Standard Definition (SD). Conventional PC architecture of CPU and GPU can only decode HD video in real-time.
- CPU, even though it keeps getting faster, will not be capable of real-time encoding HD video in the near future.

Users demand an innovative HD solution!
Future demands: not only transcoding, but also *indexing and searching features* to easily find the video which they want to watch.

Locally, 1000+ files, 10000+ hours (>1TB disk) On Internet, infinite number and hours of video

Most videos are un-tagged raw data. Difficult to find the video they want.

Short movies using DSC will be much more popular and casual in the near future.
Further Advantages: New applications by SpursEngine

- **Super realtime Transcoding**: Transcoding at faster than real-time
- **Super Resolution**: Picture resolution up-scaling for HDTV
- **Indexing**: Video categorizing during HDD storing, DVD burning
- **Gesture I/F**: Control various devices in the living room by hand gestures
- **Face Tracking**: Realtime 3D face tracking for communication tools
- **Interactive Gaming**: New type of realtime game with Gesture I/F and Face Tracking
- **Editing**: Video editing of consumer generated content

Reference URLs:
http://explore.toshiba.com/laptops/qosmio/G50
http://explore.toshiba.com/innovation-lab/quad-core-processor
Waves to Standardization and Customization

Mass production (Standardization) : Factory efficiency

Severe competition, Price down
Transistor, Diode
1957

Ffabrication IC Invention
TV, Calculator, Watch
1967

Killby patent

Severe competition, Price down
1KDRAM(Intel), 4bit MPU(Intel)
Memory, MPU
1977

Severe competition, Price down
10 million/month
Surplus supply
Memory in Asia
1987

Severe competition, Price down
100 design/month
Performance became better than RISC + ASIC
X86 + Standard PC Chipset
Emotion Engine
Cell/B.E.
1997

Software Centric Design
Cell/B.E.

CPUGen

Varying & small production (Customization) : Customer satisfaction

Severe competition, Price down
1KDRAM(Intel), 4bit MPU(Intel)
Memory, MPU
1957

Severe competition, Price down
10 million/month
Surplus supply
Memory in Asia
1987

Severe competition, Price down
100 design/month
Performance became better than RISC + ASIC
X86 + Standard PC Chipset
Emotion Engine
Cell/B.E.
1997

Power Consumption
EDA Revolution

Severe competition, Price down
100 design/month
Performance became better than RISC + ASIC
X86 + Standard PC Chipset
Emotion Engine
Cell/B.E.
1997

Software Centric Design
Cell/B.E.

Co-design of dedicated
H/W & S/W

Source : Makeimoto’s Wave
Starting ASIC, RISC Processor Era (From ‘87)

- **Starting HDL Design by Semiconductor Company’s Proprietary CAD**
 - **AI Workstation (1985 to 1987)**
 - Last trial for designing processor using standard parts
 - **3D Graphics Processor (from 1986)**
 - First chip using proprietary HDL CAD H^2^DL and standard Cell
 - Revolutionary design efficiency, small design team was arrowed
 - **AI Processor Chip (1987 to 1988)**
 - Designed by using Silicon Compiler “Genesil”
 - Defeated by severe RISC competition with declining AI booming
 - **TRON Processor (1986 to 1989)**
 - Disappeared in the CISC/RISC debates
 - **GL Processor (1989 to 1991)**
 - Again relatively large team, and couldn’t reach final stage
 - Prologue to R8000
Processor Development Became a Big Project Again

- Proprietary EDA was expelled by third party EDA vendors
 - Successor of GL Processor Team
 - Joint Development with Silicon Graphics Inc
 - Verilog HDL and logic Synthesis tool was used
 - Random verification and C reference model
 - Start of Standard EDA Era
 - Very Early out of order processor
 - One year project delay
 - Big competition era
- TX39, 49 for Embedded Application (1993-1998)
 - Embedded RISC Processor raised
 - Good power performance
 - Started to have revenue, though
Standard Processor Era Since 1997

- For the leading edge development, proprietary EDA was necessary combining with standard flow
- X86 Architecture became standard (RISC was defeated)
 - Less advantage by super scalar architecture
 - Out of order made no advantage for RISC
 - Multi-core Architecture was adopted
 - STA, Formal Verification, Extraction
 - Almost IBM Proprietary EDA was used
 - DFT, Assertion, DFM, Power Estimation
 - Was good enough for the fastest processor
 - Too early for replacing HW solution

Copyright © 2009 Toshiba Corporation, All rights reserved.
Processor Clock Rate per Year
What is going on to the MPU and SOC Now?

Just Transition from Standard MPU Era to Custom SOC Era

- Change of technology direction: Big chance in ten years
- Out of order changed the direction ten years ago
 - RISC→CISC
- From frequency competition to multi-core
 - Player increase by matured technology
- What is SOC as a technology driver?
 - Combination of processor and fixed function unit
 - SpursEngine will be one of the early example
- Big change is necessary for EDA too
 - Backend design will change too: no custom block
 - Model based design with coverage based random verification
 - High level design including software is the next key

Manufacturing Technology is Also Changing

- DFM is needed
- A lot of new materials, for low power
- New transistor structure
SpursEngine™ Physical Implementation

- **Process:**
 - 65nm bulk CMOS with 7 levels of copper layers

- **Die Size:**
 - 9.98mm x 10.31mm, 102.89mm²

- **Fmax:** 1.5GHz

- **Transistor Counts:**
 - 239.1M
 - Logic: 134.3M
 - SRAM: 104.8M

- **TDP**
 - < 20W (depending on application sets)

- **Package:**
 - FC BGA 624

* XIO™ is trademarks of Rambus Inc. in the United States and other countries.
Key Design Feature: Synthesizable Over GHz SPE

- **Synthesizable design**
 - shorter design TAT
 - (estimation: 1/4 compared with custom migration)
 - Technology Independent
 - To Develop Different Target SoC

- **Key Feature**
 - floor plan optimization
 - hybrid standard cell height
 - RTL abstraction
 - register retiming
 - semi-custom clock tree
 - wire width control
Floor Plan Optimization

Original Floor Plan (Cell/B.E.™)

Cell/B.E.™ (65nm) 2.09mm x 5.30mm

New Floor Plan

SpursEngine™ (65nm) 2.07mm x 3.93mm

Square & Compact

- more cell placement flexibility
- area: 27% smaller
- total wire length: 28% shorter

L/S : Local Storage
MFC : Memory Flow Controller
Introduction of C Model for DTV-SoC

Design Flow

C Model of Each Module

Verification Environment

Software

Input Stream

C Level Functional Simulator

Voice Output

Image Output
Effect of C Model: Shorten TAT

- Without C Model
 - Bug Count
 - Debug Finish

- With C Model
 - Detectable Bugs On C Model
 - Acceleration
 - Undetectable Bugs without Real Silicon
 - Shorten TAT

- Development Decision
 - Start using C Model
 - SoC Design Accomplish
 - 1st Sample Evaluation
 - Debug Finish
Coverage Base Random Verification

The limitation of Directed Test
- Many good engineers are necessary to write enough test cases
- Test cases must be rewritten by design changes
- Cannot write unknown test cases

Random Test is Mandatory though,
- No hand written assembler level test cases
- No way to cover all the test case
- To randomize many parameters is most important thing
- Simulation cycle count doesn’t mean verification quality → Coverage Base verification
Random Simulator for SoC

Processor Verification
- Program
 - RTL
 - Simulator
 - Log/Trace
 - Log/Trace
- Verification Results

Stream SoC Verification
- Program
 - Testbench
 - Simulator
 - Signal Driver
 - RTL
 - Log/Trace
- Verification Results

Note: The diagram illustrates the flow of information and the process of verification for both processor and stream SoC scenarios.
EDA for Technology Driver SoC

Now, it is not considered as an EDA

Fusion of Two Environments is the Key Point!

- Software environment for hardware engine control sequences
- Automatic Random vector generation
- System level development

- Highly abstracted EDA for defining algorithm and hardware architecture
- Coverage base random simulation
- Higher level description
- System level development
Software Development Cost is Dominant Even Today

Source: Embedded Software Investigation by METI (2007)
HW Variation is Very Effective for Software Environment

Apple is supporting proprietary OS with only 7% US market share

Source: Gartner (April 2008)
Towards Software Centric Era (After 2017?)

- **Software Development Cost will be much more than Today**
 - It will be impossible to support many platforms

- **HW Design Cost will also Increase a Lot**
 - Design methodology won’t meet design complexity increase
 - Verification will be the critical issue
 - Single purpose LSI will not pay off any more
 - More expensive prototyping
 - Complicated mask process

- **Enough Performance with Software Solution**
 - Less cost and power for the same function
 - It will be possible to replace dedicated HW such as software radio
 - Protocols will be more complex and varies
 - MPEG2 lasted for 10 years, but next is confusing such as H264, DIVX, VC1
 - MPEG4 varies more than 20 derivatives
 - Voice Codec are innumerable (AAC3, MP3, WMA,...)
 - Softness will have bigger advantage

- **New Revolution will be Necessary for After Software Centric Era**
Software solution of HW makes possible to….

- Freedom from standardization
- Quick service startup with new technology becomes possible

- Proprietary Contents delivery
 - Better compression technology than standard
 - Hi-level Contents protection
 - Apply various charging system
 - Efficient usage of Network Infrastructure

- Communication with proprietary protocol
- Proprietary cipher system

Program Contents

By delivering contents and decoder simultaneously

Any kind of contents are available

Copyright © 2009 Toshiba Corporation, All rights reserved.
Network Transparent Model Makes…

- Heavy function is achievable by collaborating multiple machines on the network
- Same Program is applicable to various performance machines with keeping real-time-ness from Cell phone to Server
Scalability of Cell BE

Cell Server

Engineering WS

Home Server

DTV

DVR

Car Platform

PDA

Mobile Phone

CELL

PE

SPE

CELL

PE

SPE

CELL

PE

SPE
Towards Cell World

By taking advantage of overwhelming performance, Cell BE is aiming at the new software standard world.
Summary

- Semiconductor Roadmap is Straight Forward, But application is not
 - Moore’s Law is forever!?
 - Technology Driver is changing
 - Makimoto’s Wave is still surviving

- Our Microprocessor Development History was Also Following the Wave
 - Design Methodology is Dramatically Effective for this Wave
 - Requirement for EDA for Technology Driver was Changing
 - Description, Timing, Backend, Verification
 - Positioning of Emotion Engine and Cell was Standard Processors

- Today is Transition from Standard Processor to SoC
 - No More Frequency Increase
 - Need Purpose Oriented SoC’s
 - SpursEngine is One of the Typical Example
 - Verification Methodology for Processor began to be applied for designing SoC’s
 - Needs High Level and Software Oriented Design Environment

- Next Wave will be Software Centric
 - Will take some more time for new revolution after software era

- Take Advantage of Today’s Transition
Crisis = 危機

Transition = 変転

Danger
Chance
Change
Revolution
Cell Everywhere!!

Thank you