

Challenges to EDA System from the View Point of Processor Design and Technology Drivers

Mitsuo Saito

Chief Fellow / VP Engineering Toshiba Corporation Semiconductor Company

Contents

- Semiconductor Technology and Microprocessor Trend
- Our Processor Design Experiences
 - Early Struggles for Processor Design
 - Meet with Playstation
 - Development of Graphics and Emotion Engine for Playstation 2
 - Towards Cell Broadband Engine (Cell)
 - Development of Cell Processor
 - Targets of Cell Processor
 - Towards SpursEngine
 - What is SpursEngine
- Makimoto's Wave and What we have done?
 - Historical Analysis of Development
- Today's Situation and Challenge to EDA system
 - What is necessary now?
 - What will happen next?
- Summary

TOSHIBA

Still Semiconductor Roadmap is Working : Moore's Law

First Micro Processor was born in 1971

- Intel 4004
- DIP16P, Address bus 12 bit, Data bus 4 bit
- Clock 741KHz
- P-MOS 10um
- 🔳 Tr. 2300
- 🔳 11/15/1971

From : Wikipedia

Processor Clock Rate per Year

Waves to Standardization and Customization

Source : Makimoto' s Wave

TOSHIBA

AI Workstation (1986)

- Maybe the last paper and pencil based Design!
- Processor was a board based
- About 100 sets were sold, and reasonable revenue

Al Processor Chip (1988)

•Silicon Compiler "Genesil" was Used

Performance 12 MIPS @Dhrystone Registers $32bit \times 32$ $32bit \times 2$ Buses Bus Cycle 1 Clock min Clock Freq. 16MHz Max 1.2um 2 Layer Process Metal CMOS Tr.Cnt 113K 299pin PGA Package

TOSHIBA Leading Innovation >>>

First TRON Processor TX1 (1988)

•Proprietary HDL (H²DL) was used

Performance 5 MIPS	
Registers	32bit × 16
Buses	32bit × 2
Bus Cycle	2 Clock min
Clock Freq.	25MHz Max
Process	1.0um 2 Layer Metal CMOS 155-pin PGA
Package	

Incomplete GL Processor (1990)

•Proprietary HDL (H²DL) was used

RISC Processor R8000 (1993)

•Verilog was used

Jointly developed with Silicon Graphics Inc.

R8000 Based Computer Board

Designed by Silicon Graphics Inc.

Embedded RISC Processor TX39(1995)

Verilog was used

- •First Embedded RISC
- •32bit MIPS Architecture
- •40MHz/43MIPS
- •500mw
- •4KB I cache / 1KB D cache
- •4K page MMU (32 entry)

"GSP" in 1988

- Gouraud Shading 10M Pixel/sec 30K Polygons/sec
- Flat Shading 160M Pixel/sec
- Lines
 1M Lines/sec
- Clock 20MHz
- Technology
 1.2 μ mCMOS
- Transistor Count 130K Transistors
- Chip size
 - 11.5 × 11.3mm
- Package 144pin Flat Package

Molecular model image by GSP

- 5160 Polygons
- 6.4 frames/Sec
- 8 bit/pixel
- 16bit Z Buffer

First Generation Playstation

Playstation Shipment History

From: http://www.scei.co.jp/corporate/data/

TOSHIBA Leading Innovation >>>

Playstation was very successful, though

- Original business model was not making money from Hardware but Software license. In reality, could make money even from hardware, mainly because of semiconductor cost down.
- 3D graphics could get very good reputation. But It's performance was not good enough yet. Emotion of the characters couldn't be presented!
- By considering game console life cycle, hardware performance should be competitive at least for a few years
- An epoch-making graphic chip was the key for the next generation
- Embedded DRAM technology based graphics was employed
- Main processor had to have enough performance correspond to very high performance graphics. Special processor had to be developed

"Graphics Synthesizer "(GS)

- 16.6mm × 16.8mm
- 32Mbit Embedded DRAM
- 0.25 µ m
- 47.7 M transistors
- Designed by SONY, SCE and Toshiba
- Fabricated by SONY

GRAPHICS SYNTHESIZER

16.6mm x 16.8mm (279mm²) 42.7M transistors 0.25µm

Rendering performance Trend

Copyright © 2009 Toshiba Corporation, All rights reserved.

TOSHIBA

How Emotion Engine was born?

- Toshiba could develop and provide the graphics chip for the first generation Playstaion. However, processor chip was provided by US company.
- Some engineers in Toshiba semiconductor division, began to consider to propose not only graphics but main processor for next generation Playstation, and it was called "Emotion Engine" afterwards.
- Started to approach to SCEI a few month after first generation Playstation was launched (12/3/1994).
- SCEI was interested in proposed Geometry Engine architecture, and started a joint technical investigation
- After main concept of Emotion Engine was accomplished, Toshiba team has started to develop the processor portion at the Silicon Valley office in 1996, before an agreement was done.

Emotion Engine Die Photo

15.02mm x 15.04mm Frequency : 300MHz Transistors : 13.5M Power : 18Watts Design Rule : 0.25um Gate Length : 0.18um Designed by SCE and Toshiba Fabricated by Toshiba

Emotion Engine Block Diagram

Emotion Engine Peak Performance

Copyright © 2009 Toshiba Corporation, All rights reserved.

TOSHIBA

Emotion Engine Development History

- Spring 1997: Joint Development Agreement was done (Schedule was defined)
- Spring 1998 : Design Completion has been delayed because of many Bugs of CPU and not enough speed
 - Had to report Six month delay from the original schedule
- Spring 1998 : Reorganize and enhance development team (82 engineers from Toshiba Japan), and Reset the Target date and specification
 - #1 Design Completion 7/1998
 - Chip size=17x14.1mm2
- Aug. 1998 : EE#1 Design completion (8 month Delay)
 - Relaxation of the target frequency(300MHz=>200MHz)
 - Agreed to Relax voltage and temperature constraint
- Oct. 1998 : Shipped the first sample and SCE started the system evaluation
- Dec. 31 1998 : Shipped the software developable revised samples
- Feb. 1999 : Presented at the conference (ISSCC), fair reputation
- Mar. 1999 : Next generation Playstation technical overview was presented at PlayStation Meeting 1999, and big impact on all over the world! EE#2 Design completed as scheduled and achieved 300MHz Target EE#3 Shrunken version(0.18um) development has been started

Leading Innovation >>>

With 0.25/0.18 um design rule, controlling interconnect delay has become significant task in LSI design projects.

Designer is able to do "what-if" analysis.

Timing Design Flow

Timing Closure - Results-

Clock Skew Management

- Clock skew must be minimized for
 - > the maximum clock rate,
 - evading a race condition.

- Automated Clock design, e.g. CTS, is established in Standard Cell rich ASIC.
- In Contrast, half of EE is occupied by custom blocks (CB's). Manual tuning is timeconsuming.
- We developed an automated clock tuning method.

Playstation2

Beyond Playstation2

- Jan. 1999 : The Investigation of the processor for the next-generation Playstation started internally in Toshiba
 - > At first, investigated the possibility to develop in Silicon Valley
 - Investigated IBM as a partner, they were not interested so much at first
- From the experience of Playstation2
 - We didn't have to use the existing processor architecture, because Playstation can have enough volume to be a standard by itself
 - From DVD capability experience, It will not be only a game console but the center for the entertainment in home
 - Broadband network will be popular and have very big impact
- Basic concept of the next generation processor
 - > Not just for Game console, but should be useful in various applications
 - So, it must be scalable
 - > The real-time computation will be the key for gaming and networking
 - > New computer architecture should be employed for the new world
- Development Team

TOSHIBA

- By talking directly from Kutaragi-san to IBM, SCEI, IBM, and Toshiba have agreed to set up the joint development team
- We have agreed to develop next generation general purpose processor, and three company join the project, totally even share of the resource and the right

Cell BE Development Project

- Established main campus in IBM Austin
 - For the quick startup

- Reserve excellent engineers
- Multiple sites were mandatory
 - Overcome management difficulty by frequent tele-conference
 - Network infrastructure was very effective for the information sharing
- Joint Development team has been established
 - Each part was consist of mixture of three companies engineers
 - For the good communication to collaborate smoothly
 - Necessary also for the technical transfer to each company
- After target was clarified, development was relatively smooth
 - Quick termination of culture friction was achieved
 - Flexible resource allocation was possible

Cell BE Die Photo

Cell Block Diagram

Copyright © 2009 Toshiba Corporation, All rights reserved.

Cell BE Major Development Topic

- Apr. 2000 : Architecture investigation has been started among three companies
 - Big culture gap, and lot of friction
 - > Various candidates were investigated, and concluded almost same as present one
- Mar. 2001 : Public announcement of Joint development
 - Started project by setting the campus in Austin
- Sep. 2001 : Toshiba has started to investigate the function of Peripheral chip
- Apr. 2004 : Cell BE first sample was accomplished and worked!
- Feb. 2005 : First technical presentation at ISSCC conference
 - Big impact all over the world

Leading Innovation >>>

- Aug. 2005 : Toshiba presented peripheral chip and SPE asign software idea
- Oct. 2005 : Toshiba demonstrated at CEATEC exhibition
 - One of the biggest impact demonstration
 - All major TV station mentioned in the news program
- Apr. 2006 : Toshiba started to provide Cell BE development set
- Sep. 2006 : IBM won a Cell BE based super computer for the national research Lab.
- Nov. 2006 : SCEI launched Playstation3 with Cell BE

Cell BE (SPU) Design History

-200ps

Each Reference model for SPU Development phase

TOSHIBA Leading Innovation >>>

SPU Verification Strategy

Coverage Based Verification

- Test items are written as coverage events
- Executes simulation random test cases until all the coverage events are hit.
 - Random instruction sequences
 - Random external transactions
- The checkers check SPU logic correctness while simulation
- Coverage files are generated as a simulation results

Random external transactions

Synergistic Processor Element Feature

New architecture for the data processing

- Media and floating point computation
- RISC type instruction set
 - High level language oriented
- SIMD based instruction scheme
 - 128 bit width Parallel execution (e.g. 4x32bit)
- Large 128bit width 128 entry register file
- 256KB Local store, not Cache
- Rich performance monitoring capability

Cell BE positioning as a Processor

Cell BE Proposes New Computer Direction

New computer direction proposed by Cell BE

To show hardware feature as is to the user

- Program must be written by considering HW structure and memory size
- Need knowledge about HW

> Instead, let user know what is going on in the computer

- Easier performance tuning
- Especially for realtime system

> Overwhelming cost performance is achieved

Very Small SPE sometimes provide twice of performance of PC processor

Maybe new direction since RISC is proposed

More than 20 years ago

Real-time Face Tracking

Camera captures the face of the person facing the "mirror", and in real-time, the rendered image is projected in the "mirror".

Hand Gesture User Interface

- Operate products using hand gestures (hand position, motion)
 - > Deviceless remote control.
 - Applicable for a variety of daily life objects.

[•] Three hand share can be recognized

. GUI Control by recognized image

TOSHIBA Leading Innovation >>>

Copyright © 2009 Toshiba Corporation, All rights reserved.

Hand gesture controlled media player equipment prototype

Trend of HW→SW

TOSHIBA Leading Innovation >>>

48 Streams (MPEG2) Decode Demo

- MPEG2 (About 4Mbps) · · · 720 x 480
- Read out 48 streams from HDD and Decode
- Shrink to 1/3 and arranged to one picture for displaying on the TV

Hard to Find Customers in this Field

So, by Focusing on Video Application for PC!

SpursEngine[™] Block Diagram

XDR[™] DRAM is trademark of Rambus Inc. in the United States and other countries.

TOSHIBA Leading Innovation >>>

What is the Next Target for PC? Answer is HD.

Emergence of HD Contents

- High Definition (HD) era has been quickly emerging. For instance, video content from digital terrestrial broadcasting, digital video cameras, and optical disks are all HD ready.
- HD contents require much more processing power than SD contents.
 - HD needs 6 times higher bandwidth than Standard Definition (SD). Conventional PC architecture of CPU and GPU can only decode HD video in real-time.
 - CPU, even though it keeps getting faster, will not be capable of real-time encoding HD, video, in the near future.

Demand: Video Indexing and Searching

Future demands: not only transcoding, but also *indexing and* searching features to easily find the video which they want to watch.

Further Advantages: New applications by SpursEngine

- **Super realtime Transcoding:** Transcoding at faster than real-time
- Super Resolution: Picture resolution up-scaling for HDTV
- Indexing: Video categorizing during HDD storing, DVD burning
- Gesture I/F: Control various devices in the living room by hand gestures
- **Face Tracking:** Realtime 3D face tracking for communication tools
- Interactive Gaming: New type of realtime game with Gesture I/F and Face Tracking
- Editing: Video editing of consumer generated content

HDTV

Toshiba PC: Qosmio with SpursEngine

Toshiba released Qosmio empowered by SpursEngine in July 2008.

TOSHIBA

Waves to Standardization and Customization

Source : Makimoto' s Wave

TOSHIBA

Starting ASIC, RISC Processor Era (From '87)

- Starting HDL Design by Semiconductor Company's Proprietary CAD
- AI Workstation (1985 to 1987)
 - Last trial for designing processor using standard parts
- 3D Graphics Processor (from 1986)
 - First chip using proprietary HDL CAD H²DL, and standard Cell
 - Revolutionary design efficiency, small design team was arrowed
- Al Processor Chip(1987 to 1988)
 - Designed by using Silicon Compiler "Genesil"
 - Defeated by severe RISC competition with declining AI booming
- TRON Processor (1986 to 1989)
 - Disappeared in the CISC/RISC debates
- GL Processor (1989 to 1991)
 - Again relatively large team, and couldn't reach final stage
 - Prologue to R8000

TOSHIBA Leading Innovation >>>

Processor Development Became a Big Project Again

- Proprietary EDA was expelled by third party EDA vendors
- R8000 for Server(1991-1993)
 - Successor of GL Processor Team
 - Joint Development with Silicon Graphics Inc
 - Verilog HDL and logic Synthesis tool was used
 - Random verification and C reference model
 - Start of Standard EDA Era
- R10000 for Server and Workstation (1994-1997)
 - Very Early out of order processor
 - One year project delay
 - Big competition era

TOSHIBA

- TX39, 49 for Embedded Application(1993-1998)
 - Embedded RISC Processor raised
 - Good power performance
 - Started to have revenue, though,,

Standard Processor Era Since 1997

- For the leading edge development, proprietary EDA was necessary combining with standard flow
- X86 Architecture became standard (RISC was defeated)
 - Less advantage by super scalar architecture
 - Out of order made no advantage for RISC
- Emotion Engine(1996-1999)
 - Multi-core Architecture was adopted
 - STA, Formal Verification, Extraction
- Cell Broadband Engine(2000-2005)
 - AI most IBM Proprietary EDA was used
 - DFT, Assertion, DFM, Power Estimation
 - Was good enough for the fastest processor
 - Too early for replacing HW solution

Processor Clock Rate per Year

What is going on to the MPU and SOC Now?

- Just Transition from Standard MPU Era to Custom SOC Era
 - Change of technology direction : Big chance in ten years
 - Out of order changed the direction ten years ago
 - RISC→CISC
 - From frequency competition to multi-core
 - Player increase by matured technology
 - What is SOC as a technology driver?
 - Combination of processor and fixed function unit
 - SpursEngine will be one of the early example
 - Big change is necessary for EDA too
 - Backend design will change too : no custom block
 - Model based design with coverage based random verification
 - High level design including software is the next key
- Manufacturing Technology is Also Changing
 - DFM is needed
 - A lot of new materials, for low power
 - New transistor structure

SpursEngine[™] Physical Implementation

- Process:
 - 65nm bulk CMOS with 7 levels of copper layers
- Die Size:
 - 9.98mm x 10.31mm, 102.89mm²
- Fmax: 1.5GHz
- Transistor Counts:
 - ▶ 239.1M
 - Logic: 134.3M
 - SRAM: 104.8M
- TDP
 - < 20W (depending on application sets)</p>
- Package:
 - FC BGA 624

* XIO[™] is trademarks of Rambus Inc. in the United States and other countries.

Key Design Feature: Synthesizable Over GHz SPE

Synthesizable design

- shorter design TAT
 - (estimation: 1/4 compared with custom migration)
- Technology Independent
 - To Develop Different Target SoC

Key Feature

TOSHIRA

- Floor plan optimization
- hybrid standard cell height
- RTL abstraction
- register retiming
- semi-custom clock tree
- wire width control

Floor Plan Optimization

Original Floor Plan (Cell/B.E.[™])

Cell/B.E.[™] (65nm) 2.09mm x 5.30mm

New Floor Plan

SpursEngine[™] (65nm) 2.07mm x 3.93mm

Introduction of C Model for DTV-SoC

Effect of C Model : Shorten TAT

Copyright © 2009 Toshiba Corporation, All rights reserved.

TOSHIBA

Coverage Base Random Verification

- The limitation of Directed Test
 - Many good engineers are necessary to write enough test cases
 - Test cases must be rewritten by design changes
 - Cannot write unknown test cases
- Random Test is Mandatory though,
 - No hand written assembler level test cases
 - No way to cover all the test case
 - To randomize many parameters is most important thing
 - ➤ Simulation cycle count doesn't mean verification quality →Coverage Base verification

Random Simulator for SoC

EDA for Technology Driver SoC

Fusion of Two Environments is the Key Point!

Software Development Cost is Dominant Even Today

Source : Embedded Software Investigation by METI (2007)

HW Variation is Very Effective for Software Environment

Apple is supporting proprietary OS with only 7% US market share

Source: Gartner (April 2008)

TOSH

Towards Software Centric Era (After 2017?)

- Software Development Cost will be much more than Today
 - It will be impossible to support many platforms
- HW Design Cost will also Increase a Lot
 - Design methodology won't meet design complexity increase
 - Verification will be the critical issue
 - Single purpose LSI will not pay off any more
 - More expensive prototyping
 - Complicated mask process
- Enough Performance with Software Solution
 - Less cost and power for the same function
 - It will be possible to replace dedicated HW such as software radio
 - Protocols will be more complex and varies
 - MPEG2 lasted for 10 years, but next is confusing such as H264, DIVX, VC1
 - MPEG4 varies more than 20 derivatives
 - Voice Codec are innumerable (AAC3,MP3,WMA,,,,)
 - Softness will have bigger advantage

TOSHIBA

Leading Innovation >>>

New Revolution will be Necessary for After Software Centric Era

Software solution of HW makes possible to....

- Freedom from standardization
- Quick service startup with new technology becomes possible

- Proprietary Contents delivery
 - Better compression technology than standard
 - Hi-level Contents protection
 - Apply various charging system
 - Efficient usage of Network Infrastructure
- Communication with proprietary protocol
- Proprietary cipher system

TOSHIBA

Leading Innovation >>>

Any kind of contents are available

Network Transparent Model Makes...

- Heavy function is achievable by collaborating multiple machines on the network
- Same Program is applicable to various performance machines with keeping real-time-ness from Cell phone to Server

TOSHIBA

Scalability of Cell BE

TOSHIBA

Towards Cell World

By taking advantage of overwhelming performance, Cell BE is aiming at the new software standard world

Summary

Semiconductor Roadmap is Straight Forward, But application is not

- Moore's Law is forever!?
- Technology Driver is changing
- Makimoto's Wave is still surviving
- Our Microprocessor Development History was Also Following the Wave
 - Design Methodology is Dramatically Effective for this Wave
 - Requirement for EDA for Technology Driver was Changing
 - Description, Timing, Backend, Verification
 - Positioning of Emotion Engine and Cell was Standard Processors
- Today is Transition from Standard Processor to SoC
 - No More Frequency Increase
 - Need Purpose Oriented SoC's
 - SpursEngine is One of the Typical Example
 - Verification Methodology for Processor began to be applied for designing SoC's
 - Needs High Level and Software Oriented Design Environment
- Next Wave will be Software Centric

TOSHIBA

- Will take some more time for new revolution after software era
- Take Advantage of Today's Transition

Cell Everywhere!! Thank you

TOSHIBA Leading Innovation >>>

