Highlights

Opening and Keynote I
Tuesday, January 20, 8:30-10:00, Small Auditorium, 5F

“Challenges to EDA System from the View Point of Processor Design and Technology Drivers”
Mitsuo Saito - Chief Fellow and VP of Engineering, Toshiba Corporation Semiconductor Company, Japan

Keynote II
Wednesday, January 21, 9:00-10:00, Small Auditorium, 5F

“Automated Synthesis and Verification of Embedded Systems: Wishful Thinking or Reality?”
Wolfgang Rosenstiel - Professor, Chair for Computer Engineering and Director, Wilhelm-Schickard-Institute for Informatics, University of Tuebingen, Germany

Keynote III
Thursday, January 22, 9:00-10:00, Small Auditorium, 5F

“From Restrictive to Prescriptive Design”
Leon Stok - Director, Electronic Design Automation, IBM Systems and Technology Group, United States

Special Sessions

1D: Tuesday, January 20, 10:15-12:20, Room 416+417

Presentation + Poster Discussion: “University LSI Design Contest”
(See page 23 for more details.)

2D: Tuesday, January 20, 13:30-15:35, Room 416+417

Invited Talks: “EDA Acceleration Using New Architectures”

2D-1: Aspects of GPU for General Purpose High Performance Computing
- Reiji Suda (Univ. of Tokyo/JST CREST, Japan), Takayuki Aoki (Tokyo Inst. of Tech./JST, CREST, Japan), Shoichi Hirawasa (Univ. of Electro-Comm./JST CREST, Japan)
- Akira Nakada (Tokyo Inst. of Tech./JST CREST, Japan)
- Hiroki Honda (Univ. of Electro-Comm./JST CREST, Japan), Satoshi Matsuoka (Tokyo Inst. of Tech./JST CREST/NII, Japan)

2D-2: Designing and Optimizing Compute Kernels on Nvidia GPUs
- Damir A. Jamsek (IBM Research, United States)

2D-3: Parallelizing Fundamental Algorithms such as Sorting on Multi-core Processors for EDA Acceleration
- Masato Edahiro (NEC Corp./Univ. of Tokyo, Japan)

3D: Tuesday, January 20, 15:55-18:00, Room 416+417

Invited Talks: “Hardware Dependent Software for Multi- and Many-Core Embedded Systems”

3D-1: Introduction to Hardware-dependent Software Design
- Rainer Dömer (Univ. of California, Irvine, United States), Andreas Gerstlauer (Univ. of Texas, Austin, United States), Wolfgang Müller (Univ. of Paderborn, Germany)

3D-2: Using a Dataflow abstracted Virtual Prototype for HDS Design
- Wolfgang Ecker, Stefan Heinen (Infineon Technologies AG, Germany)

3D-3: Needs and Trends in Embedded Software Development for Consumer Electronics
- Yasutaka Tsunakawa (Sony Corp., Japan)

3D-4: Hardware-dependent Software Synthesis for Many-Core Embedded Systems
- Damir A. Jamsek (IBM Research, United States), Charles Chiang, Subarna Sinha (Synopsys, United States)

4D: Wednesday, January 21, 10:15-12:20, Room 416+417

Invited Talks: “Challenges in 3D Integrated Circuit Design”

4D-1: Three-Dimensional Integration Technology and Integrated Systems
- Mitsumasa Koyanagi, Takaumi Fukushima, Tetsu Tanaka (Tohoku Univ., Japan)

4D-2: A 3D Prototyping Chip based on a Wafer-level Stacking Technology
- Nobuaki Miyakawa (Honda Research Institute, Japan)

4D-3: Design and CAD Challenges for 3D ICs
- David Kung, Ruchir Puri (IBM Corp., United States)

4D-4: Addressing Thermal and Power Delivery Bottlenecks in 3D Circuits
- Sachin S. Sapatnekar (Univ. of Minnesota, United States)

4D-5: The Road to 3D EDA Tool Readiness
- Charles Chiang, Subarna Sinha (Synopsys, United States)

9D: Thursday, January 22, 15:55-18:00, Room 416+417

Invited Talks + Panel Discussion: “Dependable VLSI: Device, Design and Architecture – How should they cooperate?”
Designers’ Forum

5D: Wednesday, January 21, 13:30-15:35, Room 416+417

Invited Talks: “Consumer SoCs”

5D-1: Development of Full-HD Multi-standard Video CODEC IP Based on Heterogeneous Multiprocessor Architecture
Tatsuya Kamei, Tetsuhiro Yamada, Takao Koike, Masayuki Ito, Takahiro Iriti, Kenichi Nitta, Toshihiro Hattori, Shinichi Yoshioka (Renesas Technology Corp., Japan)

5D-2: A 65nm Dual-Mode Baseband and Multimedia Application Processor SoC with Advanced Power and Memory Management
Yuichi Kado, Mitsuru Harada (NTT, Japan)

5D-3: UniPhier: Series Development and SoC Management
Hiroto Yasuura (Kyushu Univ., Japan)

5D-4: Analog/RF Circuit Designs
Takahiro Yamahata (Hitachi, Ltd., Japan)

5D-5: Consumer SoCs
Takashi Miyamoto, Masaru Kokubo (Hitachi, Ltd., Japan)

Panel Discussion: “Near-Future SoC Architectures – Can Dynamically Reconfigurable Processors be a Key Technology?”
Moderator: Hideharu Amano (Keio Univ., Japan)
Panelists: Toru Awashima (NEC Corp., Japan), Hisanori Fujiwara (Fujitsu Labs. Ltd., Japan), Naohiko Irie (Hitachi, Ltd., Japan), Takashi Miyamori (Toshiba Corp., Japan), Tony Stansfield (Panasonic Europe Ltd., Great Britain)

One Full-Day and Six Half-Day Tutorials

5D: Wednesday, January 21, 15:55-18:00, Room 416+417

Panel Discussion: “ESL Design Methods”
Moderator: Takashi Hasegawa (Fujitsu Microelectronics Ltd., Japan)
Panelists: Simon Bloch (Mentor Graphics Corporation, United States), Ahmed Jerraya (CEA-LETI, France), Gabriela Niculescu (Ecole Polytechnique de Montreal, Canada), Shigeru Oho (Hitachi, Ltd., Japan), Koichiro Yamashita (Fuji Labs. Ltd., Japan)

Monday, January 19, 2009, 14:00-17:00

6 Recent Advances in Low-Leakage VLSI Design
Organizer: Youngsoo Shin - KAIST, Korea
Speaker: Youngsoo Shin - KAIST, Korea Kaushik Roy - Purdue Univ., United States

7 Memory Architectures and Software Transformations for System Level Design
Organizer: Nikil Dutt - Univ. of California, Irvine, United States
Speaker: Stylianos Mamagkakis - IMEC, Belgium
Preeti Panda - Indian Institute of Technology, Delhi, India

Monday, January 19, 2009, 9:30-12:30 and 14:00-17:00

4, 5 Circuit Reliability: Modeling, Simulation, and Resilient Design Solutions
Section I (morning): Reliability Mechanisms and the Impact on IC Design
Organizer: Yu (Kevin) Cao - Arizona State Univ., United States
Speakers (Section I): Yu (Kevin) Cao - Arizona State Univ., United States Kaushik Roy - Purdue Univ., United States

Section II (afternoon): Circuit Aging Prediction and Resilient Design
Speakers (Section II): Marek Patyra - Intel, United States Subhasish Mitra - Stanford Univ., United States

Monday, January 19, 2009, 9:30-12:30 and 14:00-17:00

8D: Thursday, January 22, 13:30-15:35, Room 416+417

Panel Discussion: “Near-Future SoC Architectures – Can Dynamically Reconfigurable Processors be a Key Technology?”
Moderator: Hideharu Amano (Keio Univ., Japan)
Panelists: Toru Awashima (NEC Corp., Japan), Hisanori Fujiwara (Fujitsu Labs. Ltd., Japan), Naohiko Irie (Hitachi, Ltd., Japan), Takashi Miyamori (Toshiba Corp., Japan), Tony Stansfield (Panasonic Europe Ltd., Great Britain)

One Full-Day and Six Half-Day Tutorials

FULL-DAY Tutorial:
Monday, January 19, 2009, 9:30-17:00

1 Software Development and Programming of Multicore LSI
Organizer: Ahmed Amine Jerraya - TIMA, France
Speakers: Wayne Wolf - Georgia Institute of Technology, United States Damir Jamsek - IBM, United States Hirooyuki Tomiyama - Nagoya Univ., Japan Fa-bien Clermidy - CEA-LETI, France

HALF-DAY Tutorials:
Monday, January 19, 2009, 9:30-12:30

Organizer: Masahiro Fujita - Univ. of Tokyo, Japan
Speakers: Masahiro Fujita - Univ. of Tokyo, Japan Alan J. Hu - Univ. of British Columbia, Canada Andy Chou - Coverity Inc., United States

3 Statistical Design on the Verge of Maturity: Revisiting the Foundation
Organizer: Michael Orshansky - Univ. of Texas, Austin, United States
Speakers: Sanj Nassif - IBM, United States Michael Orshansky - Univ. of Texas, Austin, United States

Monday, January 19, 2009, 9:30-12:30 and 14:00-17:00
Welcome to ASP-DAC 2009

On behalf of the Organizing Committee, I would like to invite you to attend the Asia and South Pacific Design Automation Conference 2009 (ASP-DAC 2009), being held here at Pacifico Yokohama, Japan, from January 19 through 22, 2009, jointly with the Electronic Design and Solution Fair 2009. ASP-DAC 2009 offers an ideal place for all these people to meet and exchange ideas about the challenges and solutions for the future. I hope you visit the conference to learn about all the latest advances in electronic design technology and automation.

The heart of conference is the technical program. ASP-DAC 2009 received 355 submissions from 33 countries/regions. Based on the result of a rigorous and thorough review followed by a full day face-to-face discussion, 116 papers were selected and compiled into an exciting program. Each day, the technical program starts with a keynote address. This year, ASP-DAC is proud to present three keynote presentations from leading-edge company's leaders and academia. On Tuesday, Mr. Mitsuo Saito, Chief Fellow and VP of Engineering, Toshiba Corporation Semiconductor Company, will present some examples of the relationship between the design methodology revolution and the microprocessor evolution and the special requirements to the EDA industry for the next generation of SoCs and multi core processors. On Wednesday, Professor Wolfgang Rosenstiel, University of Tuebingen, will discuss possibilities and limitations of system level automated synthesis and verification of embedded systems. On Thursday, Dr. Leon Stok, Director, Electronic Design Automation, IBM Systems and Technology Group, will discuss if design rules can still be described in terms of restrictions for the coming technologies or if new approaches are needed.

The Designers' Forum is our unique program that will share design experience and solutions of actual product designs of the industries. This year's program will include invited talks of up-to-date consumer SoCs and analog technologies, panels of upstream design methods and dynamic reconfigurable processors.

The University Design Contest is also an important annual event of ASP-DAC where 23 designs were selected for presentation. On Monday, one full-day and six half-day tutorials are scheduled to provide introductions to hot topics such as design for variability, reliable circuit design, low leakage design, multi-core software development, embedded system design, and functional verification.

An event like ASP-DAC doesn't just happen. I wish to express my appreciation to all authors, speakers, reviewers, session organizers, session chairs, panelists, keynote speakers and tutors. Also, I sincerely thank the members of the Organizing Committee, the Technical Program Committee, the University Design Contest Committee, the Technical Liaison and the Steering Committee.

Finally, special thanks to all ASP-DAC attendees — we are sure you will have a productive and exciting experience at ASP-DAC 2009.

Kazutoshi Wakabayashi
General Chair
ASP-DAC 2009

Message from Technical Program Committee

On behalf of the Technical Program Committee of the Asia and South Pacific Design Automation Conference (ASP-DAC) 2009, we would like to welcome all of you to the conference held from January 19 through 22, 2009 at Pacifico Yokohama Conference Center in Yokohama, Japan.

This year, ASPDAC received 355 paper submissions, which is about the same as last year. The submissions span close to 30 countries/regions in Asia, North America, South America, Europe, Oceania, Australia and Africa. The Technical Program Committee was composed of 95 professionals who are experts on EDA, IC design, and system design, and was organized into 13 subcommittees. All committee members contributed to in-depth, rigorous and thorough reviews and most of them attended the paper selection meeting. Through a full day face-to-face discussion, 116 quality papers have been selected and compiled into 24 technical sessions in a three-day, three parallel tracks program. The program is further enriched by three keynote addresses, an additional track of special sessions and panels, and excellent tutorial sessions. We sincerely hope you will enjoy and benefit from the program.

Each day, technical session starts with a keynote address which is organized under the leadership of Dr. Kazutoshi Wakabayashi, General Chair. We have 9 special sessions on Track D (1D - 9D). On Tuesday, we have University LSI Design Contest session (1D), and sessions (2D and 3D) for recent advances on EDA area using novel highly parallel architectures. On Wednesday, we have a session 3D for three dimensional integrated circuit design issues and two designers’ forum sessions (5D and 6D) for consumer SoCs and a panel discussion on ESL design methods. On Thursday, we have two designers’ forum session on analog/RF circuits and on near-future SoC architectures, and an attracting special panel on Dependable VLSI device, design and architecture. These special sessions covers novel and exciting topics and we hope that you can find some hint to the further research and development on LSI.

Finally, we would like to thank all people contributed to the 2009 event. At first, we should thank all the authors who submitted excellent quality papers, since their contributions form the basis of our technical excellence. We also would like to thank to members of Organizing and Technical Program Committees, the members of Industry Liaison, organizers of special sessions and the conference secretariat (JESA).
Looking forward to meeting with you at ASP-DAC 2009.

Ren-Song Tsay
TPC Chair
ASP-DAC 2009
Shinji Kimura
TPC Vice Chair
ASP-DAC 2009

Sponsorship

Sponsored by:

IEEE Circuits and Systems Society
http://www.ieee-cas.org

ACM/SIGDA
http://www.sigda.org

IEICE ESS (Institute of Electronics, Information and Communication Engineers – Engineering Sciences Society)
http://www.ieice.org

IPSJ SIGSLDM (Information Processing Society of Japan – SIG System LSI Design Methodology)
http://www.ipsj.or.jp

Technical Co-Sponsor:

IEEE Council on Electronic Design Automation
http://www.c-eda.org

Supported by:

JEITA (Japan Electronics and Information Technology Industries Association)
http://www.jeita.or.jp

STARC (Semiconductor Technology Academic Research Center)
http://www.starcp.jp

City of Yokohama

Industrial/Academic Contributors:

NEC System Technologies, Ltd.
http://www.necst.co.jp/english/index.htm
Cadence Design Systems, Inc.
http://www.cadence.com

General Chair
Kazutoshi Wakabayashi
NEC Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666, Japan
wakaba@bl.jp.nec.com

Past Chair
Chong-Min Kyung
KAIST
kyung@ee.kaist.ac.kr

Secretaries
Yoshinori Takeuchi
Osaka University
takeuchi@ist.osaka-u.ac.jp
Kiyoharu Hamaguchi
Osaka University
hama@ist.osaka-u.ac.jp

Takashi Takenaka
NEC Corporation
takenaka@aj.jp.nec.com

SC Chair
Hiroto Yasuura
Kyushu Univ.
SC Vice Chair
Hidetoshi Onodera
Kyoto Univ.
Technical Program Chair
Ren-Song Tsay
National Tsing Hua Univ.
Technical Program Vice Chair
Shinji Kimura
Waseda Univ.
Technical Program Secretary
Jing-Jia Liou
National Tsing Hua Univ.

University LSI Design Contest Co-Chairs
Kazutoshi Kobayashi
Kyoto Univ.
Kenichi Okada
Tokyo Inst. of Tech.
Designers’ Forum Co-Chairs
Kunihiro Asada
Univ. of Tokyo
Kunio Uchiyama
Hitachi, Ltd.
Designers’ Forum Vice Co-Chairs
Makoto Ikeda
Univ. of Tokyo
Sumio Morioka
NEC Corp.
TPC Subcommittees

(∗ indicates the subcommittee chair.)

[1] System-Level Design Methodology

∗Ing-Jer Huang
National Sun-Yat Sen Univ.
Xu Cheng
Peking Univ.
Eui-Young Chung
Yonsei Univ.
Tsuneo Nakata
Fujitsu Labs. Ltd.

∗Nozomu Togawa
Waseda Univ.
Chia-Lin Yang
National Taiwan Univ.
Qiang Xu
Chinese Univ. of Hong Kong
Danella Zhao
Univ. of Louisiana, Lafayette

∗Sri Parameswaran
Univ. of New South Wales
Samar Abdi
Univ. of California, Irvine
Karam Chatha
Arizona State Univ.
Robert Dick
Northwestern Univ.

∗Tulika Mitra
National Univ. of Singapore
Preeti Ranjan Panda
Indian Inst. of Tech., Delhi
Li Shang
Univ. of Colorado, Boulder

∗Samarji Chakraborty
National Univ. of Singapore
Naehyuck Chang
Seoul National Univ.
Pai Chou
Univ. of California, Irvine
Zonghua Gu
HKUST
Paul Pop
Technical Univ. of Denmark

∗Gang Quan
Univ. of South Carolina
Chi-Sheng Shih
National Taiwan Univ.
Hiroyuki Tomiyama
Nagoya Univ.
Sungjoo Yoo
Samsung Corp.

[4] High-Level/Behavioral/Logic Synthesis and Optimization

∗Deming Chen
Univ. of Illinois, Urbana-Champaign
Ki-Seok Chung
Hanyang Univ.
Soheil Ghasi
Univ. of California, Davis
Hiroyuki Higuchi
Fujitsu Microelectronics Ltd.

Taewhan Kim
Seoul National Univ.
Yuan Xie
Pennsylvania State Univ.
Shigeru Yamashita
NAIST

[5] Validation and Verification for Behavioral/Logic Design

∗Shin’ichi Minato
Hokkaido Univ.
Chung-Yang Huang
National Taiwan Univ.
Igor Markov
Univ. of Michigan

Yuichi Nakamura
NEC Corp.
Farn Wang
National Taiwan Univ.
Yoshinori Watanabe
Cadence Design Systems, Inc.

[6] Physical Design (Routing)

∗Hyunchul Shin
Hanyang Univ.
Jeong-Tyng Li
SpringSoft
Atsushi Takahashi
Tokyo Inst. of Tech.

Ting-Chi Wang
National Tsing Hua Univ.
Martin D.F. Wong
Univ. of Illinois, Urbana-Champaign

[7] Physical Design (Placement)

∗Wai-Kei Mak
National Tsing Hua Univ.
Ameya Agnihotri
Magma Design Automation, Co., Ltd.
Hung Ming Chen
National Chiao Tung Univ.
Shigetoshi Nakatake
Univ. of Kitakyushu

Gi-Joon Nam
IBM Corp.
Sherif Reda
Brown Univ.
Evangeline F.Y. Young
Chinese Univ. of Hong Kong

∗Youngsoo Shin
KAIST
Emrah Acar
IBM Corp.
Shabbir Batterywala
Synopsys, Inc.
Farzan Fallah
Fujitsu Laboratories of America

Matthew Guthaus
Univ. of California, Santa Cruz
Masanori Hashimoto
Osaka Univ.
Shih-Hsu Huang
Chung Yuan Christian Univ.

[9] Signal/power Integrity, Interconnect/Device/Circuit Modeling and Simulation

∗Hideki Asai
Shizuoka Univ.
Yungseon Eo
Hanyang Univ.
Yu-Min (Roger) Lee
National Chiao Tung Univ.
En-Xiao Liu
Inst. of High Performance Computing

Zuying Luo
Beijing Normal Univ.
Parthasarathy Ramaswamy
Intel Corp.
Takashi Sato
Tokyo Inst. of Tech.
Sheldon Tan
Univ. of California, Riverside

[10] Design for Manufacturability/Yield and Statistical Design

∗David Pan
Univ. of Texas, Austin
Keh-Jeng Chang
National Tsing Hua Univ.
Charles Chiang
Synopsys, Inc.

Puneet Gupta
Univ. of California, Los Angeles
Toshiyuki Shibuya
Fujitsu Labs. Ltd.
Hua Xiang
IBM T.J. Watson

∗Seiji Kajihara
Kyushu Inst. of Tech.
Wu-Tung Cheng
Menter Graphics
Shi-Yu Huang
National Tsing Hua Univ.

Satoshi Ohtake
NAIST
Ming-Der Shieh
Cheng-Kung Univ.

16 17 18
[12] Analog, RF and Mixed Signal Design and CAD

∗Jaijeet Roychowdhury
Univ. of California, Berkeley

Chin-Fong Chiu
National Chip Implementation Center

Seongwhan Cho
KAIST

[13] Emerging Technologies and Applications

∗Chin-Long Wey
National Central Univ.

Chris Dwyer
Duke Univ.

Chun-Ming Huang
National Chip Implementation Center

Tomohisa Kimura
Toshiba Corp.

Alper Demir
Koc Univ.

Eric Keiter
Sandia National Labs.

University LSI Design Contest Committee

Co-Chairs

Kazutoshi Kobayashi
Kyoto University
kobayasi@kuee.kyoto-u.ac.jp

Kenichi Okada
Tokyo Institute of Technology
okada@ssc.pe.titech.ac.jp

Jiun-In Guo
National Chung-Cheng Univ.

Chih-Wei Liu
National Chiao Tung Univ.

Masanori Hariyama
Tohoku Univ.

In-Cheol Park
KAIST

Hiroshi Kawaguchi
Kobe Univ.

Chi-Ying Tsui
HKUST

Jri Lee
National Taiwan Univ.

Design

Masaru Kakimoto
Sony Corp.

Yoshio Masubuchi
Toshiba Corp.

Sumio Morioka
NEC Corp.

Masatsu Nakajima
Panasonic Corp.

Osamu Nishii
Renesas Tech. Corp.

Sunao Torii
NEC Corp.

Hideki Yoshizawa
Fujitsu Labs. Ltd.

JEITA

Takao Eda
Rohm Co., Ltd.

Takeshi Nishimoto
Sharp Corp.

Academia

Makoto Ikeda
Univ. of Tokyo

Industry Liaison

Chair

Kunihiro Asada
University of Tokyo
asada@silicon.t.u-tokyo.ac.jp

Kunio Uchiyama
Hitachi, Ltd.
The University LSI Design Contest was conceived as a unique program of ASP-DAC Conference. The purpose of the Contest is to encourage education and research in LSI design, and its realization on chips at universities, and other educational organizations by providing opportunities to present and discuss innovative and state-of-the-art designs at the conference. Application areas and types of circuits include (1) Analog, RF and Mixed-Signal Circuits, (2) Digital Signal Processing, (3) Microprocessors, and (4) Custom Application Specific Circuits and Memories. Methods or technology used for implementation include (a) Full Custom and Cell-Based LSIs, (b) Gate Arrays, and (c) Field Programmable Devices, including FPGA/PLDs.

This year, 23 selected designs from five countries/areas will be disclosed in Session 1D with a short presentations followed by live discussions in front of posters with light meals. Submitted designs were reviewed by the members of the University Design Contest Committee. As a result, the 23 designs were selected. Also, we have instituted one outstanding design award and one special feature award.

It is with great pleasure that we acknowledge the contributions to the Design Contest, and it is our earnest belief that it will promote and enhance research and education in LSI design in academic organizations. It is also our hope that many people not only in academia but in industry will attend the contest and enjoy the stimulating discussions.

Date, Time and Locations:
Oral Presentation 10:15-12:20, January 20, 2009, Room 416+417
Poster Presentation 12:20-13:30, January 20, 2009, Room 418 (Food will be served.)

University LSI Design Contest Committee
Co-Chairs
Kazutoshi Kobayashi
Kyoto University
Kenichi Okada
Tokyo Institute of Technology
Student Forum at ASP-DAC 2009

A poster session for graduate students to present their research work is held during ASP-DAC 2009. This is a great opportunity for students to get feedback and have discussion with people from academia and industry.

Date and Time: 12:20-13:30, January 21, 2009
Location: Room 418 (Food will be served.)

We would like to thank the following poster selection committee members that evaluated the submissions,

- Koji Hashimoto (Fukuoka University, Japan)
- Tohru Ishihara (Kyushu University, Japan)
- Kazuhiro Ito (Saitama University, Japan)
- Yih-Lang Li (National Chiao Tung University, Taiwan)
- Chien-Nan Jimmy Liu (National Central University, Taiwan)
- Yung-Hsiang Lu (Purdue University, United States)
- Nozomu Togawa (Waseda University, Japan)
- Chun-Yao Wang (National Tsing Hua University, Taiwan)
- David Wu (Chinese University of Hong Kong, Hong Kong)
- Chia-Lin Yang (National Taiwan University, Taiwan)

The sponsor of this forum is Technical Group on VLSI Design Technologies (TGVLD) of the Institute of Electronics, Information and Communication Engineers (IEICE). We would also like to thank ASP-DAC 2009 for sponsoring the event. Special thanks to Dr. Farzan Fallah and Professor Atsushi Takahashi for supporting and contributing to the Student Forum.

Co-Chairs

Yasuhiro Takashima
University of Kitakyushu
Ting-Chi Wang
National Tsing Hua University

ASP-DAC 2009 Best Papers

Best Paper Candidates

1A-1 Adaptive Inter-router Links for Low-Power, Area-Efficient and Reliable Network-on-Chip (NoC) Architectures
Avinash Karanth Kodi (Ohio Univ., United States), Ashwini Sarathy, Ahmed Louri, Janet Wang (Univ. of Arizona, United States)

1C-1 FastYield: Variation-Aware, Layout-Driven Simultaneous Binding and Module Selection for Performance Yield Optimization
Gregory Lucas, Scott Cromar, Deming Chen (Univ. of Illinois, Urbana-Champaign, United States)

3A-1 System-Level Cost Analysis and Design Exploration for Three-Dimensional Integrated Circuits (3D ICs)
Xiangyu Dong, Yuan Xie (Pennsylvania State Univ., United States)

4B-3 Analog Placement with Common Centroid and 1-D Symmetry Constraints
Linfu Xiao, Evangeline Young (Chinese Univ. of Hong Kong, Hong Kong)

4C-1 Stochastic Current Prediction Enabled Frequency Actuator for Runtime Resonance Noise Reduction
Yiyu Shi (Univ. of California, Los Angeles, United States), Jinjun Xiong, Howard Chen (IBM, United States), Lei He (Univ. of California, Los Angeles, United States)

5B-1 Efficient Analytical Determination of the SEU-induced Pulse Shape
Rajesh Garg, Sunil P Khatri (Texas A&M Univ., United States)

5C-1 Efficiently Finding the ‘Best’ Solution with Multi-Objectives from Multiple Topologies in Topology Library of Analog Circuit
Yu Liu, Masato Yoshioka, Katsumi Homma, Toshiyuki Shibuya (Fujitsu Laboratories Ltd., Japan)

6B-1 Efficient Simulated Evolution Based Rerouting and Congestion-Relaxed Layer Assignment on 3-D Global Routing
Ke-Ren Dai, Wen-Hao Liu, Yih-Lang Li (National Chiao Tung Univ., Taiwan)

7B-1 Dependent Latch Identification in the Reachable State Space
Chen-Hsuan Lin, Chun-Yao Wang (National Tsing Hua Univ., Taiwan)

8A-1 Improving Scalability of Model-Checking for Minimizing Buffer Requirements of Synchronous Dataflow Graphs
Nan Guan (Northeastern Univ., China), Zonghua Gu (HKUST, China), Wang Yi (Uppsala Univ., Sweden), Ge Yu (Northeastern Univ., China)

8B-1 A Novel Toffoli Network Synthesis Algorithm for Reversible Logic
Yexin Zheng, Chao Huang (Virginia Tech, United States)

8C-4 Design for Burn-In Thermal Stability under Die-to-Die Parameter Variations
Mesut Meterelliyoz, Kaushik Roy (Purdue Univ., United States)

Best Paper Award

1C-1 FastYield: Variation-Aware, Layout-Driven Simultaneous Binding and Module Selection for Performance Yield Optimization
Gregory Lucas, Scott Cromar, Deming Chen (Univ. of Illinois, Urbana-Champaign, United States)

5C-1 Efficiently Finding the ‘Best’ Solution with Multi-Objectives from Multiple Topologies in Topology Library of Analog Circuit
Yu Liu, Masato Yoshioka, Katsumi Homma, Toshiyuki Shibuya (Fujitsu Laboratories Ltd., Japan)
Invitation to ASP-DAC 2010

On behalf of the Organizing Committee, I would like to invite you to the 2010 Asia and South-Pacific Design Automation Conference (ASP-DAC 2010) to be held on January 18-21, 2010 in Taipei, Taiwan. This is the first time that ASP-DAC comes to Taiwan. Taiwan is the place where many electronics systems and semiconductor devices are designed and manufactured. We have a very large community of academic researchers and industrial practitioners who are eager to interact with the world EDA community. In other words, Taiwan is a very good market for EDA ideas.

Taipei is the capital city of Taiwan. It is easily accessible by direct flight from major cities around the world. You will find many interesting places to visit. In addition to regular conference activity, the Organizing Committee will organize several social activities to enrich your trip.

Since 2006, in order to maintain quality and consistency of its technical program, ASP-DAC has established a rotation rule that includes the separation of the Technical Program Committee from the Organizing Committee. The 2010 Technical Program Committee will be under the leadership of Professor Shinji Kimura of Waseda University, Japan. I solicit your support to the conference by submitting your research work to the ASP-DAC 2010.

I hope you will have a successful ASP-DAC 2009 in Yokohama and look forward to seeing you all in Taipei in 2010.

Youn-Long Lin
General Chair
ASP-DAC 2010

About ASP-DAC

The ASP-DAC, is a premier Design Automation and Design conference, especially for Asian and South Pacific Electronic Design Automation and Design community, providing a forum to present and exchange ideas in order to promote the research, and accelerating cooperation between the IC Design and Design methodologies. The conference attendees are primarily developers of the EDA/CAD Tools and designers of VLSI circuits & systems (IP & SoC).

Keynote Addresses

Opening & Keynote I
Tuesday, January 20, 8:30-10:00,
Small Auditorium, 5F
“Challenges to EDA System from the View Point of Processor Design and Technology Drivers”
Mitsuo Saito
Chief Fellow and VP of Engineering
Toshiba Corporation Semiconductor Company, Japan

Historically, many microprocessors have been developed, since it was invented in early 1970’s. Microprocessor design was always under the hardest competition, so they had been the technology driver for the semiconductor technology and the design methodology until recently.

By discussing the relationship between the design methodology (EDA) revolution and the technology driver products transition, based upon famous Maki-moto’s wave hypothesis, what happened to the microprocessor world is highlighted by showing typical examples.

As a recent example, the positioning of the Cell Broadband Engine as a high performance computing processor and as a flexible HW, is discussed mainly, also the performance result, and the future trend of the microprocessors towards multi-core are discussed. Then it is explained, why SpursEngine derived from Cell Broadband Engine had to be developed.

SoC (combination of microprocessor and HW functional unit) for custom applications should be the technology driver, for the next decade, which is the first experience after microprocessor was born. The special requirements to the EDA system to realize next wave, are predicted.

Finally, when the next wave comes, maybe after 2017, software centric era, what happens to the world, is briefly mentioned.

Keynote II
Wednesday, January 21, 9:00-10:00,
Small Auditorium, 5F
“Automated Synthesis and Verification of Embedded Systems: Wishful Thinking or Reality?”
Wolfgang Rosenstiel
Professor, Chair for Computer Engineering and Director
Wilhelm-Schickard-Institute for Informatics,
University of Tuebingen, Germany

More complex embedded hardware/software systems have to be developed with shorter design time and reduced cost. One solution for this problem is increasing design automation starting from higher levels of abstraction. Automatic synthesis and verification has been around in research for a quite a while. This talk will show examples for state-of-the-art tools for system-level synthesis and verification of embedded systems and demonstrate their possibilities and limitations by some automotive applications.
For many generations the hand-off between design and manufacturing has been done by a set of design rules. However, design rule manuals have grown in size from several tens of pages a few generations back to hundreds of pages now. Many more design rules have been added since the end of traditional scaling. Even with all these additional rules, corner cases are found late in the process that can become significant yield or functionality detractors. Restricted Design Rules (RDRs) have been created to simplify the design rules and come up with more manufacturable designs. IBM has practiced RDRs in the last few process generations but is this enough? For the next technology nodes no new exposure tools will be available for mass production and optical scaling is coming to a halt. Computational scaling will be required to extend Moore's law. In this new era, can we keep on describing design rules in terms of restrictions or do we need another approach?
<table>
<thead>
<tr>
<th>Session 1D: University LSI Design Contest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, January 20, 10:15 - 12:20</td>
</tr>
<tr>
<td>Room 416+417</td>
</tr>
<tr>
<td>Chairs: Jiun-In Guo – National Chung Cheng Univ., Taiwan</td>
</tr>
<tr>
<td>Hiroki Ishikuro – Keio Univ., Japan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-1 A Wireless Real-Time On-Chip Bus Trace System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shusuke Kawai, Takayuki Ikari (Keio Univ., Japan), Yutaka Takikawa (Renesas Design Corp, Japan), Hiroki Ishikuro, Tadahiro Kuroda (Keio Univ., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-2 CKVdd: A Self-Stabilization Ramp-Vdd Technique for Dynamic Power Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chin-Hsien Wang, Ching-Hwa Cheng (Fengchia Univ., Taiwan), Jiun-In Guo (National Chung Cheng Univ., Taiwan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-3 A 300 nW, 7 ppm/C CMOS Voltage Reference Circuit based on Subthreshold MOSFETs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Ueno (Hokkaido Univ., Japan), Tetsuya Hirose (Kobe Univ., Japan), Tetsuya Asai, Yoshitomo Amemiya (Hokkaido Univ., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-4 A 100Mbps, 0.19mW Asynchronous Threshold Detector with DC Power-Free Pulse Discrimination for Impulse UWB Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lechang Liu, Yoshihiro Miyamoto, Zhiiwei Zhou, Kosuke Sakaida, Jisun Ryu, Koichi Ishida, Makoto Takamiya, Takayasu Sakurai (Univ. of Tokyo, Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-5 Low-Power CMOS Transceiver Circuits for 60GHz Band Millimeter-wave Impulse Radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmet Oncu, Minoru Fujishima (Univ. of Tokyo, Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-6 An Inductor-less MPPT Design for Light Energy Harvesting Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hui Shao, Chi-Ying Tsui, Wing-Hung Ki (HKUST, Hong Kong)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-7 A 1 GHz CMOS Comparator with Dynamic Offset Control Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiaolei Zhu (Keio Univ., Japan), Sanroku Tsukamoto (Fujitsu Laboratories Ltd., Japan), Takahiro Kuroda (Keio Univ., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-8 Circuit Design Using Stripe-Shaped PMELA TFTs on Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keita Iki, Jinmyoung Kim, Makoto Ikeda, Kunihiro Asada (Univ. of Tokyo, Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-9 Low Energy Level Converter Design for Sub-Vth Logics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hui Shao, Chi-Ying Tsui (HKUST, Hong Kong)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-10 A Time-to-Digital Converter with Small Circuitry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazuya Shimizu, Masato Kaneta, Haijun Lin, Haruo Kobayashi, NobuKazu Takai (Gunma Univ., Japan), Masao Hotta (Musashi Inst. of Tech., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-11 A Vdd Independent Temperature Sensor Circuit with Scaled CMOS Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiroki Oshiyama, Toshihiro Matsuda, Keiichi Suzuki, Hideyuki Ikawa (Toyama Prefectural Univ., Japan), Takashi Ohzone (Dawn Enterprise Co. Ltd., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-12 A Current-mode DC-DC Converter using a Quadratic Slope Compensation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chihiro Kawabata, Yasuhiro Sugimoto (Chuo Univ., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-13 Ultra-Low-Power ANSI S1.11 Filter Bank for Digital Hearing Aids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yu-Ting Kuo, Tai-Jyi Lin, Yueh-Tai Li (National Chiao Tung Univ., Taiwan), Chou-Kun Lin (ITRI, STC, Taiwan), Chih-Wei Liu (National Chiao Tung Univ., Taiwan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-14 An 11,424 Gate-Count Dynamic Optically Reconfigurable Gate Array with a Photodiode Memory Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daisaku Seto, Minoru Watanabe (Shizuoka Univ., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-15 A Low-Power FPGA Based on Autonomous Fine-Grain Power-Gating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shota Ishihara, Masanori Haryama, Michitaka Kameyama (Tokohku Univ., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-16 A 52-mW 8.29mm² 19-mode LDPC Decoder Chip for Wireless WiMAX Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xin-Yu Shih, Cheng-Zhuo Zhan, Cheng-Hung Lin, An-Yeu (Andy) Wu (National Taiwan Univ., Taiwan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-17 A Full-Synthesizable High-Precision Built-In Delay Time Measurement Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ming-Chien Tsai, Ching-Hwa Cheng (Fengchia Univ., Taiwan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-18 A Dynamic Quality-Scalable H.264 Video Encoder Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsiu-Cheng Chang, Yao-Chang Yang, Jia-Chen (National Chung Cheng Univ., Taiwan), Ching-Lung Su (National Yunlin Univ. of Science and Tech., Taiwan), Cheng-An Chien, Jiun-In Guo, Jinn-Shyan Wang (National Chung Cheng Univ., Taiwan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-19 A High Performance LDPC Decoder for IEEE802.11n Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wen Ji, Yuta Abe, Takeshi Ikenaga, Satoshi Goto (Waseda Univ., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-20 Design and Chip Implementation of the Ubiquitous Processor HCGorilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa-aki Fujikawa, Kazunori Noda, Atsuko Yokoyama, Tomohiro Sato (Hiraioski Univ., Japan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-21 An 8,696 Mvertices/s 278 Mpixels/s Tile-based 3D Graphics SoC HW/SW Development for Consumer Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liang-Bi Chen, Rwei-Ting Gu, Wei-Sheng Huang, Chien-Chou Wang, Wen-Chi Shiue, Tsung-Yu Ho, Yun-Nan Chang, Shen-Fu Hsiao, Chung-Nan Lee, Ing-Jer Huang (National Sun Yat-Sen Univ., Taiwan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-22 A Multi-Task-Oriented Security Processing Architecture with Powerful Extensibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dan Cao, Jun Han, Xiao-yang Zeng, Shi-ting Lu (Fudan Univ., China)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D-23 A Delay-Optimized Universal FPGA Routing Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fang Wu, Huowen Zhang, Lei Duan, Jinmei Lai, Yuan Wang, Jiarong Tong (Fudan Univ., China)</td>
</tr>
</tbody>
</table>
Tuesday, January 20, 13:30 - 15:35

Session 2A: MPSoC and IP Integration

Chairs: Nozomu Togawa – Waseda Univ., Japan
 Marcello Lajolo – NEC Laboratories America, United States

2A-1 Timing Variation-Aware Task Scheduling and Binding for MPSoC
 HaNeul Chon, Taewhan Kim (Seoul National Univ., Republic of Korea)

2A-2 Flexible and Abstract Communication and Interconnect Modeling for MPSoC
 Katalin Popovicí (TIMA Lab., France), Ahmed Jerraya (CEA-LETI, MINATEC, France)

2A-3 Partial Order Method for Timed Simulation of System-Level MPSoC Designs
 Eric Cheung, Harry Hsieh (Univ. of California, Riverside, United States), Felice Balarin (Cadence Design Systems, United States)

2A-4 A UML-Based Approach for Heterogeneous IP Integration
 Zhenxin Sun, Weng-Fai Wong (National Univ. of Singapore, Singapore)

Tuesday, January 20, 13:30 - 15:35

Session 2B: Power Analysis and Optimization

Chair: Masanori Hashimoto – Osaka Univ., Japan

2B-1 Statistical Modeling and Analysis of Chip-Level Leakage Power by Spectral Stochastic Method
 Ruijing Shen, Ning Mi, Sheldon Tan (Univ. of California, Riverside, United States), Yici Cai, Xianlong Hong (Tsinghua Univ., China)

2B-2 On the Futility of Statistical Power Optimization
 Jason Cong, Puneet Gupta, John Lee (Univ. of California, Los Angeles, United States)

2B-3 Timing Driven Power Gating in High-Level Synthesis
 Shih-Hsu Huang, Chun-Hua Cheng (Chung Yuan Christian Univ., Taiwan)

2B-4 Congestion-Aware Power Grid Optimization for 3D Circuits Using MIM and CMOS Decoupling Capacitors
 Pingqiang Zhou, Karthikey Sridharan, Sachin S.apatnekar (Univ. of Minnesota, United States)

2B-5 Incremental and On-demand Random Walk for Iterative Power Distribution Network Analysis
 Yiyu Shi, Wei Yao (Univ. of California, Los Angeles, United States), Jinjun Xiong (IBM, United States), Lei He (Univ. of California, Los Angeles, United States)

Tuesday, January 20, 13:30 - 15:35

Session 2C: Logic and Arithmetic Optimization

Chair: Dale Edwards – Semiconductor Research Corp., United States
 Hirohiko Higuchi – Fujitsu Microelectronics Ltd., Japan

2C-1 SAT-Controlled Redundancy Addition and Removal — A Novel Circuit Restructuring Technique
 Chi-An Wu, Ting-Hao Lin, Shao-Lun Huang, Chung-Yang (Ric) Huang (National Taiwan Univ., Taiwan)

2C-2 On Improved Scheme for Digital Circuit Rewiring and Application on Further Improving FPGA Technology Mapping
 Fu Shing Chim, Tak Kei Lam, Yu Liang Wu (Chinese Univ. of Hong Kong, Hong Kong)

2C-3 Hybrid LZA: A Near Optimal Implementation of the Leading Zero Anticipator
 Amit Verma (National Inst. of Tech., Rourkela, India), Ajay K. Verma, Philip Brisk, Paolo Ienne (EPFL, Switzerland)

2C-4 An Optimized Design for Serial-Parallel Finite Field Multiplication over GF(2^n) Based on All-One Polynomials
 Pramod Kumar Meher (Nanyang Technological Univ., Singapore), Yajun Ha (National Univ. of Singapore, Singapore), Chiu-Yung Lee (Lunghwa Univ. of Science and Tech., Taiwan)

Tuesday, January 20, 13:30 - 15:35

Session 2D: Special Session: EDA Acceleration Using New Architectures

Organizer: Damir A. Jamsek – IBM Corp., United States

2D-1 Aspects of GPU for General Purpose High Performance Computing
 Reiji Suda (Univ. of Tokyo/JST CREST, Japan), Takayuki Aoki (Tokyo Inst. of Tech./JST CREST, Japan), Shoichi Hirasawa (Univ. of Electro-Communications/JST CREST, Japan), Akira Nukada (Tokyo Inst. of Tech./JST CREST, Japan), Hiroyuki Honda (Univ. of Electro-Communications/JST CREST, Japan), Satoshi Matsuoka (Tokyo Inst. of Tech./JST CREST/NII, Japan)

2D-2 Designing and Optimizing Compute Kernels on Nvidia GPUs
 Damir A. Jamsek (IBM Research, United States)

2D-3 Parallelizing Fundamental Algorithms such as Sorting on Multi-core Processors for EDA Acceleration
 Masatoshi Edahiro (NEC Corp./Univ. of Tokyo, Japan)

Tuesday, January 20, 15:55 - 18:00

Session 3A: System-Level Design of 3D Chips and Configurable Systems

Chair: Eui-Young Chung – Yonsei Univ., Republic of Korea
 Steve Haga – National Sun Yat-Sen Univ.

3A-1 System-Level Cost Analysis and Design Exploration for Three-Dimensional Integrated Circuits (3D ICs)
 Xiangyu Dong, Yuan Xie (Pennsylvania State Univ., United States)

3A-2 Synthesis of Networks on Chips for 3D Systems on Chips
 Srinivas Murali, Ciprian Seiculescu (EPFL, Switzerland), Luca Benini (Univ. of Bologna, Italy), Giovanni De Micheli (EPFL, Switzerland)

3A-3 An Application-centered Design Flow for Self Reconfigurable Systems Implementation
 Fabio Cancare, Marco Domenico Santambrogio, Donatella Sciuto (Politecnico di Milano, Italy)
3A-4 System-Level Process Variability Compensation on Memory Organizations. On the Scalability of Multi-Mode Memories
Concepcion Sanz, Manuel Prieto, Jose Ignacio Gomez (Univ. Complutense de Madrid, Spain), Antonis Papanikolau, Francky Catthoor (Inter-Univ. Microelectronics Center, Belgium)

Tuesday, January 20, 15:55 - 18:00 Room 416+417
Session 3D: Special Session: Hardware Dependent Software for Multi- and Many-Core Embedded Systems

Organizers: Rainer Doemer – Univ. of California, Irvine, United States
Andreas Gerstlauer – Univ. of Texas, Austin, United States
Wolfgang Mueller – Univ. of Paderborn, Germany

3D-1 Introduction to Hardware-dependent Software Design
Rainer Dömer (Univ. of California, Irvine, United States), Andreas Gerstlauer (Univ. of Texas, Austin, United States), Wolfgang Müller (Univ. of Paderborn, Germany)

3D-2 Using a Dataflow abstracted Virtual Prototype for HDS-Design
Wolfgang Ecker, Stefan Heinzen, Michael Velten (Infineon Technologies AG, Germany)

3D-3 Needs and Trends in Embedded Software Development for Consumer Electronics
Yasutaka Tsunakawa (Sony Corp., Japan)

3D-4 Hardware-dependent Software Synthesis for Many-Core Embedded Systems
Samar Abdi, Gunar Schirner, Ines Viskic, Hansu Cho, Yonghyun Hwang, Lochi Yu, Daniel Gajski (Univ. of California, Irvine, United States)

4A-1 Computation and Data Transfer Co-Scheduling for Interconnection Bus Minimization
Cathy Qun Xu (Univ. of Texas, Dallas, United States), Chun Jason Xue, Bessie C Hu (City Univ. of Hong Kong, Hong Kong), Edwin H.M. Sha (Univ. of Texas, Dallas, United States)

4A-2 Prototyping Pipelined Applications on a Heterogeneous FPGA Multiprocessor Virtual Platform
Aníbal Tumeo, Marco Branca, Lorenzo Camerini, Marco Ceriani (Politecnico di Milano, Italy), Matteo Monchiero (HP Labs, United States), Gianluca Palermo, Fabrizio Ferrandi, Donatella Sciuto (Politecnico di Milano, Italy)

4A-3 Variability-Aware Robust Design Space Exploration of Chip Multiprocessor Architectures
Gianluca Palermo, Cristina Silvano, Vittorio Zaccaria (Politecnico di Milano, DEI, Italy)

4A-4 Partial Conflict-Relieving Programmable Address Shuffler for Parallel Memories in Multi-Core Processor
Young-Su Kwon, Bon-Tae Koo, Nak-Woong Eum (ETRI, Republic of Korea)

4A-5 HitME: Low Power Hit MEmory Buffer for Embedded Systems
Andhi Janapsatya, Sri Parameswaran, Aleksandar Ignjatovic (Univ. of New South Wales, Australia)
4C-1 Stochastic Current Prediction Enabled Frequency Actuator for Runtime Resonance Noise Reduction
Yiyu Shi (Univ. of California, Los Angeles, United States), Jinjun Xiong, Howard Chen (IBM, United States), Lei He (Univ. of California, Los Angeles, United States)

4C-2 Fast Analysis of Nontree-Clock Network Considering Environmental Uncertainty by Parameterized and Incremental Macromodeling
Hai Wang (Univ. of California, Riverside, United States), Hao Yu (Berkeley Design Automation, United States), Sheldon X.D. Tan (Univ. of California, Riverside, United States)

4C-3 High Performance On-Chip Differential Signaling Using Passive Compensation for Global Communication
Ling Zhang, Yulei Zhang (Univ. of California, San Diego, United States), Akira Tsuchiya (Kyoto Univ., Japan), Masanori Hashimoto (Osaka Univ., Japan), Ernest Kuh (Univ. of California, Berkeley, United States), Chung-Kuan Cheng (Univ. of California, San Diego, United States)

4C-4 Noise Minimization During Power-Up Stage for a Multi-Domain Power Network
Wanping Zhang (Qualcomm Inc./Univ. of California, San Diego, United States), Yi Zhu (Univ. of California, San Diego, United States), Wenjian Yu (Tsinghua Univ. China), Amirali Sayany, Renshen Wang (Univ. of California, San Diego, United States), Zhi Zhu (Qualcomm Inc., United States), Chung-Kuan Cheng (Univ. of California, San Diego, United States)

4C-5 Parallel Transistor Level Circuit Simulation using Domain Decomposition Methods
He Peng, Chung-Kuan Cheng (Univ. of California, San Diego, United States)

4C-6 Fast Circuit Simulation on Graphics Processing Units
Kanupriya Gulati (Texas A&M Univ., United States), John F. Croix (Nasncentric, Inc., United States), Sunil P. Khatri (Texas A&M Univ., United States), Rahm Shastry (Nasncentric, Inc., United States)

4D-1 Three-Dimensional Integration Technology and Integrated Systems
Mitsumasa Koyanagi, Takafumi Fukushima, Tetsu Tanaka (Tohoku Univ., Japan)

4D-2 A 3D Prototyping Chip based on a Wafer-level Stacking Technology
Nobuaki Miyakawa (Honda Research Institute, Japan)

4D-3 CAD Challenges for 3D ICs
David Kung, Ruchir Puri (IBM Corp., United States)

4D-4 Addressing Thermal and Power Delivery Bottlenecks in 3D Circuits
Sachin S. Sapatnekar (Univ. of Minnesota, United States)

4D-5 The Road to 3D EDA Tool Readiness
Charles Chiang, Subarna Sinha (Synopsys, United States)

5A-1 Energy-aware HW/SW Co-synthesis Algorithm for Heterogeneous NoC
Qingli Zhang, Mingyan Yu, Fangfa Fu, Peng Yun, Junjie Song, Min Fan (Harbin Inst. of Tech., China)

Florin Balasa (Southern Utah Univ., United States), Ilie I. Luican (Univ. of Illinois, Chicago, United States), Hongwei Zhu (ARM, Inc., United States), Doru V. Nasui (American International Radio Inc., United States)

5A-3 Systematic Architecture Exploration based on Optimistic Cycle Estimation for Low Energy Embedded Processors
Ittetsu Taniguchi (Osaka Univ., Japan), Murali Jayapala (IMEC vzw./K.U.Leuven, Belgium), Praveen Raghavan, Francck Cattenhoor (IMEC vzw./K.U.Leuven, Belgium), Keishi Sakunushi, Yashonir Takeuchi, Masaharu Imai (Osaka Univ., Japan)

5A-4 A Framework for Estimating NBTI Degradation of Microarchitectural Components
5B-1 Efficient Analytical Determination of the SEU-induced Pulse Shape
Rajesh Garg, Sunil P. Khatri (Texas A&M Univ., United States)

5B-2 Post-Routing Redundant Via Insertion with Wire Spreading Capability
Cheok-Kei Lei, Po-Yi Chiang, Yu-Min Lee (National Chiao Tung Univ., Taiwan)

5B-3 Accounting for Non-linear Dependence Using Function Driven Component Analysis
Lerong Cheng, Puneet Gupta, Lei He (Univ. of California, Los Angeles, United States)

5B-4 Risk Aversion Min-Period Retiming under Process Variations
Jia Wang, Hai Zhou (Northwestern Univ., United States)

5B-5s Timing Analysis and Optimization Implications of Bimodal CD Distribution in Double Patterning Lithography
Kwangok Jeong, Andrew B. Kahng (Univ. of California, Los Angeles, United States)

5B-6s Scheduled Voltage Scaling for Increasing Lifetime in the Presence of NBTI
Lide Zhang, Robert Dick (Northwestern Univ., United States)

5C-1 Efficiently Finding the 'Best' Solution with Multi-Objectives from Multiple Topologies in Topology Library of Analog Circuit
Yu Liu, Masate Yoshioka, Katsumi Homma, Toshiyuki Shibuya (Fujitsu Laboratories Ltd., Japan)

5C-2 Automated Design and Optimization of Circuits in Emerging Technologies
Rajesh A. Thakker, Chaitanya Sathe, Angada B. Sachid, Maryam Shojaei Baghini, V. Ramgopal Rao, Mahesh B. Patil (IIT Bombay, India)

5C-3 An Automated Design Approach for CMOS LDO Regulators
Samiran DasGupta, Pradip Mandal (IIT Kharagpur, India)

5C-4 A SCORE Macromodel for PLL Designs to Analyze Supply Noise Interaction Issues at Behavioral Level
Chin-Cheng Kuo, Pei-Syun Lin, Chien-Nan Jimmy Liu (National Central Univ., Taiwan)

5C-5 Gen-Adler: The Generalized Adler’s Equation for Injection Locking Analysis in Oscillators
Prateek Bhansali, Jaijeet Roychowdhury (Univ. of Minnesota, United States)

Wednesday, January 21, 13:30 - 15:35 Room 416+417
Session 5D: Designers’ Forum: Consumer SoC
Chair: Yoshio Masubuchi – Toshiba Corp., Japan

5D-1 Development of Full-HD Multi-standard Video CODEC IP Based on Heterogeneous Multiprocessor Architecture
Hiroaki Nakata, Koji Hosogi, Masakazu Ehama, Taka-fumi Yuasa, Toru Fujihira (Hitachi, Ltd., Japan), Kenichi Iwata, Motoki Kimura, Fumitaka Izu-hara, Seiji Mochizuki, Masaki Nobori (Resenas Technology Corp., Japan)

5D-2 A 65nm Dual-mode Baseband and Multimedia Application Processor SoC with Advanced Power and Memory Management
Tatsuya Kamei, Tetsuhiro Yamada, Takao Koike, Masayuki Ito, Takahiro Irita, Kenichi Nitta, Toshihiro Hattori, Shinichi Yoshioka (Resenas Technology Corp., Japan)

5D-3 UniPhier: Series Development and SoC Management
Yoshito Nishimichi, Nobuo Higaki, Masataka Osaka, Seiji Horii, Hisato Yoshida (Panasonic Corp., Japan)

Wednesday, January 21, 15:55 - 18:00 Room 416+417
Session 6A: System Level Simulation and Modeling
Chairs: Tsuneo Nakata – Fujitsu Laboratories Ltd., Japan

6A-1 Automatic Instrumentation of Embedded Software for High Level Hardware/Software Co-Simulation
Aimen Bouchhima, Patrice Gerin, Frédéric Pétrot (TIMA Lab., France)

6A-2 Fast and Accurate Performance Simulation of Embedded Software for MPSoC
Eric Cheung, Harry Hsieh (Univ. of California, Riverside, United States), Felice Balarin (Cadence Design Systems, United States)

6A-3 Automatic Generation of Cycle Accurate and Cycle Count Accurate Transaction Level Bus Models from a Formal Model
Chen Kang Lo, Ren Song Tsay (National Tsing Hua Univ., Taiwan)

6A-4 A Combined Analytical and Simulation-Based Model for Performance Evaluation of a Reconfigurable Instruction Set Processor
Farhad Mehdipour (Kyushu Univ., Japan), Hamid Noori (ISIT, Japan), Bahman Javadi (Amirkabir Univ. of Tech., Iran), Hiroaki Honda (ISIT, Japan), Koji Inoue, Kazuaki Murakami (Kyushu Univ., Japan)

Wednesday, January 21, 15:55 - 18:00 Room 411+412
Session 6B: Chip and Package Routing Techniques
Chairs: Eric Keiter – Sandia National Laboratories, United States
Chin-Fong Chiu – National Chip Implementation Center, Taiwan

5C-1 Efficiently Finding the 'Best' Solution with Multi-Objectives from Multiple Topologies in Topology Library of Analog Circuit
Yu Liu, Masate Yoshioka, Katsumi Homma, Toshiyuki Shibuya (Fujitsu Laboratories Ltd., Japan)

5D-1 Development of Full-HD Multi-standard Video CODEC IP Based on Heterogeneous Multiprocessor Architecture
Hiroaki Nakata, Koji Hosogi, Masakazu Ehama, Taka-fumi Yuasa, Toru Fujihira (Hitachi, Ltd., Japan), Kenichi Iwata, Motoki Kimura, Fumitaka Izu-hara, Seiji Mochizuki, Masaki Nobori (Resenas Technology Corp., Japan)

5D-2 A 65nm Dual-mode Baseband and Multimedia Application Processor SoC with Advanced Power and Memory Management
Tatsuya Kamei, Tetsuhiro Yamada, Takao Koike, Masayuki Ito, Takahiro Irita, Kenichi Nitta, Toshihiro Hattori, Shinichi Yoshioka (Resenas Technology Corp., Japan)

5D-3 UniPhier: Series Development and SoC Management
Yoshito Nishimichi, Nobuo Higaki, Masataka Osaka, Seiji Horii, Hisato Yoshida (Panasonic Corp., Japan)

Wednesday, January 21, 15:55 - 18:00 Room 411
Session 6B: Chip and Package Routing Techniques
Chairs: Ting-Chi Wang – National Tsing Hua Univ., Taiwan
Yasuhiro Takashima – Univ. of Kitakyushu, Japan

6B-1 Efficient Simulated Evolution Based Rerouting and Congestion-Relaxed Layer Assignment on 3-D Global Routing
Ke-Ren Dai, Wen-Hao Liu, Yih-Lang Li (National Chiao Tung Univ., Taiwan)

6B-2 FastRoute 4.0: Global Router with Efficient Via Minimization
Yue Xu, Yanheng Zhang, Chris Chu (Iowa State Univ., United States)
6B-3s High-Performance Global Routing with Fast Overflow Reduction
Huang-Yu Chen, Chin-Hsiung Hsu, Yao-Wen Chang (National Taiwan Univ., Taiwan)

6B-4s IO Connection Assignment and RDL Routing for Flip-Chip Designs
Jin-Tai Yan, Zhi-Wei Chen (Chung Hua Univ., Taiwan)

6B-5 On Using SAT to Ordered Escape Problems
Lijuan Luo, Martin D.F. Wong (Univ. of Illinois, Urbana-Champaign, United States)

6B-6 A Fast Longer Path Algorithm for Routing Grid with Obstacles using Biconnectivity based Length Upper Bound
Yukihide Kohira, Suguru Suehiro, Atsushi Takahashi (Tokyo Inst. of Tech., Japan)

Wednesday, January 21, 15:55 - 18:00 Room 416+417
Session 6D: Designers’ Forum: ESL Design Methods
ESL Design Methods
Moderator: Takashi Hasegawa – Fujitsu Microelectronics Ltd., Japan
Panelists:
Simon Bloch – Mentor Graphics Corp., United States
Ahmed Jerraya – CEA-LETI, France
Gabriela Nicolescu – Ecole Polytechnique de Montreal, Canada
Shigeru Oho – Hitachi, Ltd., Japan
Koichiro Yamashita – Fujitsu Labs. Ltd., Japan

7A-1 Thermal-aware Post Compilation for VLIW Architectures
Wen-Wen Hsieh, TingTing Hwang (National Tsing Hua Univ., Taiwan)

7A-2 A Software Solution for Dynamic Stack Management on Scratch Pad Memory
Arun Kannan, Aviral Shrivastava, Amit Pabalkar, Jong-eun Lee (Arizona State Univ., United States)

7A-3 Compiler-Managed Register File Protection for Energy-Efficient Soft Error Reduction
Jongeun Lee, Aviral Shrivastava (Arizona State Univ., United States)

7A-4 Code Decomposition and Recomposition for Enhancing Embedded Software Performance
Youngchul Cho (SAIT, Samsung Electoronics, Republic of Korea), Kiyoungh Choi (Seoul National Univ., Republic of Korea)

Thursday, January 22, 9:00 - 10:00 Small Auditorium, 5F
Session 3K: Keynote Session III
Chair: Kazutoshi Wakabayashi – NEC Corp., Japan
From Restrictive to Prescriptive Design
Leon Stok (IBM, United States)

Thursday, January 22, 10:15 - 12:20 Room 411+412
Session 7A: Compilation Techniques for Embedded Systems
Chairs: Hiroyuki Tomiyama – Nagoya Univ., Japan
Maziar Goudarzi – Kyushu Univ., Japan

7B-1 Dependent Latch Identification in the Reachable State Space
Chen-Hsuan Lin, Chun-Yao Wang (National Tsing Hua Univ., Taiwan)

7B-2 Complete-k-Distinguishability for Retiming and Resynthesis Equivalence Checking without Restricting Synthesis
Nikolaos Liveris, Hai Zhou (Northwestern Univ., United States), Prithviraj Banerjee (HP Labs, United States)

7B-3 Disjunctive Transition Relation Decompositions for Multithreaded Image Computation
Stergios Stergiou, Jawahar Jain (Fujitsu Laboratories of America, United States)

7B-4 Multi-Clock SVA Synthesis without Re-writing
Jiang Long, Andrew Seawright, Paparao Kavalipati (Mentor Graphics Corp., United States)

7B-5 Automatic Formal Verification of Clock Domain Crossing Signals
Bing Li, Chris Ka-Kei Kwok (Mentor Graphics Corp., United States)

Thursday, January 22, 10:15 - 12:20 Room 413
Session 7B: Sequential Design Verification
Chair: Satoshi Ohtake – NAIST, Japan

7C-1 Fast False Path Identification Based on Functional Unsensitizability Using RTL Information
Yuki Yoshikawa (Hiroshima City Univ., Japan), Satoshi Ohtake (NAIST, Japan), Tomoo Inoue (Hiroshima City Univ., Japan), Hideo Fujiwara (NAIST, Japan)

7C-2 Conflict Driven Scan Chain Configuration for High Transition Fault Coverage and Low Test Power
Zhen Chen, Boxue Yin, Dong Xiang (Tsinghua Univ., China)

7C-3 Dynamic Test Compaction for a Random Test Generation Procedure with Input Cube Avoidance
Irith Pomeranz (Purdue Univ., United States), Sudhakar Reddy (Univ. of Iowa, United States)

7C-4 Detectability of Internal Bridging Faults in Scan Chains
Fan Yang (Univ. of Iowa, United States), Sreejit Chakravarty, Narendra Devta-Prasanna (LSI Corp., United States), Sudhakar M. Reddy (Univ. of Iowa, United States), Irith Pomeranz (Purdue Univ., United States)
7C-5 Fault Modeling and Testing of Retention Flip-Flops in Low Power Designs
Bing-Chuan Bai (National Taiwan Univ., Taiwan), Augusti Killi (Faraday Technology Corp., Taiwan), Chien-Mo Li (National Taiwan Univ., Taiwan), Kun-Cheng Wu (Faraday Technology Corp., Taiwan)

Thursday, January 22, 10:15 - 12:20
Room 416+417
Session 7D: Designers’ Forum: Analog/RF Circuit Designs

Chair: Makoto Ikeda – Univ. of Tokyo, Japan

7D-1 Design Methods for Pipeline & Delta-Sigma A-to-D Converters with Convex Optimization
Kazuo Matsukawa, Takashi Morie, Yusuke Tokunaga, Shiro Sakiyama, Yosuke Mitani, Masao Takayama, Takui Miki, Akinori Matsumoto, Koji Obata, Shiro Dosho (Panasonic Corp., Japan)

7D-2 A Low-Jitter 1.5-GHz and Large-EMI Reduction 10-dBm Spread-Spectrum Clock Generator for Serial-ATA
Takashi Kawamoto, Masaru Kokubo (Hitachi, Ltd., Japan)

7D-3 RF-Analog Circuit Design in Scaled SoC
Nobuyuki Itoh, Mototsugu Hamada (Toshiba Corp., Japan)

7D-4 An Approach to the RF-LSI Design for Ubiquitous Communication Appliances
Yuichi Kado, Mitsu Harada (NTT, Japan)

Thursday, January 22, 13:30 - 15:35
Room 411+412
Session 8A: High-Level Design and Scheduling

Chairs: Yuichi Nakamura – NEC Corp., Japan
Keishi Sakanushi – Osaka Univ., Japan

8A-1 Improving Scalability of Model-Checking for Minimizing Buffer Requirements of Synchronous Dataflow Graphs
Nan Guan (Northeastern Univ., China), Zonghua Gu (HKUST, China), Wang Yi (Uppsala Univ., Sweden), Ge Yu (Northeastern Univ., China)

8A-2 A Reverse-Encoding-based on-chip AHB Bus Tracer for Efficient Circular Buffer Utilization
Fu-Ching Yang, Cheng-Lung Chiang, Ing-Jer Huang (National Sun Yat-Sen Univ., Taiwan)

8A-3 Analyzing and Optimizing Energy Efficiency of Algorithms on DVS Systems: a First Step towards Algorithmic Energy Minimization
Tetsuo Yokoyama, Gang Zeng, Hiroyuki Tomiyama, Hiroaki Takada (Nagoya Univ., Japan)

8A-4 Novel Task Migration Framework on Configurable Heterogeneous MPSoC Platforms
Hao Shen, Frédéric Pétrot (TIMA Lab., France)

Thursday, January 22, 13:30 - 15:35
Room 413
Session 8B: Emerging Design Methodologies and Applications

Chair: Chin-Long Wey – National Central Univ., Taiwan

8B-1 A Novel Toffoli Network Synthesis Algorithm for Reversible Logic
Yexin Zheng, Chao Huang (Virginia Tech, United States)

8B-2 A Cycle-Based Synthesis Algorithm for Reversible Logic
Zahra Sasanian, Mehdi Saeedi, Mehdi Sedighi, Morteza Saheb Zamani (Amirkabir Univ. of Tech., Iran)

8B-3 Array Like Runtime Reconfigurable MIMO Detectors for 802.11n WLAN: A Design Case Study
Pankaj Bhagawat, Rajballav Dash, Gwan Choi (Texas A&M Univ., United States)

8B-4 Mapping method for Dynamically Reconfigurable Architecture
Akira Kuroda, Mayuko Koyukoku, Hidenori Matsuzaki, Takashi Yoshikawa, Shigeo Hiro Asano (Toshiba Corp., Japan)

8B-5 A Criticality-Driven Microarchitectural Three Dimensional (3D) Floorplanner
Srinath Sridharan, Michael DeBole, Guangyu Sun, Yuan Xie, Vijiaykrishnan Narayanan (Pennsylvania State Univ., United States)
Thursday, January 22, 15:55 - 18:00 Room 413
Session 9B: Emerging Technologies
Chair: Mehdi Baradaran Tahoori – Northeastern Univ., United States

9B-1 High-Speed Low-Power FinFET Based Domino Logic
Seid Hadi Rasouli (Univ. of California, Santa Barbara, United States), Hanpei Koike (AIST, Japan), Kaustav Banerjee (Univ. of California, Santa Barbara, United States)

9B-2 A Stochastic Perturbative Approach to Design a Defect-Aware Thresholder in the Sense Amplifier of Crossbar Memories
M. Haykel Ben Jamaa (EPFL, Switzerland), David Atienza (Univ. Complutense de Madrid, Spain), Yusuf Leblebici, Giovanni De Micheli (EPFL, Switzerland)

9B-3 An Alternate Design Paradigm for Robust Spin-Torque Transfer Magnetic RAM (STT MRAM) from Circuit/Architecture Perspective
Jing Li, Patrick Ndai, Ashish Goel, Haixin Liu, Kaushik Roy (Purdue Univ., United States)

9B-4 A Design Methodology and Device/Circuit/Architecture Compatible Simulation Framework for Low-Power Quantum Cellular Automata Systems
Charles Augustine, Behtash Behin-Aein, Xuanyao Fong, Kaushik Roy (Purdue Univ., United States)

9B-5 Reconfigurable Double Gate Carbon Nanotube Field Effect Transistor Based Nanoelectronic Architecture
Bao Liu (Univ. of Texas, San Antonio, United States)

Thursday, January 22, 15:55 - 18:00 Room 411+412
Session 9D: Special Session: Dependable VLSI: Device, Design and Architecture – How should they cooperate ? –
Organizer: Shuichi Sakai – Univ. of Tokyo, Japan

Dependable VLSI: Device, Design and Architecture – How should they cooperate ? –
Organizer: Shuichi Sakai – Univ. of Tokyo, Japan
Panelists: Hidetoshi Onodera – Kyoto Univ., Japan
Hiroto Yasuura – Kyushu Univ., Japan
James C. Hoe – Carnegie Mellon Univ., United States

Tutorials

Tutorial 1 (FULL DAY)
Monday, January 19, 9:30–17:00 Room 411+412
Software Development and Programming of Multi-core LSI

Organizer: Ahmed Amine Jerraya – TIMA, France
Speakers: Wayne Wolf – Georgia Institute of Technology, United States
Damir Jamsek – IBM, United States
Hiroyuki Tomiyama – Nagoya University, Japan
Fabien Clermidy – CEA-LETI, France

LSI designs integrate an increasing number of heterogeneous programmable units (CPU, ASIP and DSP subsystems) and sophisticated communication interconnects. In conventional computers programming is based on an operating system that fully hide the underlying hardware architecture. Unlike classic computers, the design of LSI includes the building of application specific memory architecture and specific interconnect and other kinds of hardware components required to efficiently executing the software for a well defined class of applications. In this case, the programming model hides both hardware and software interfaces that may include sophisticated communication and synchronization concepts to handle parallel programs running on the processors. When the processors are heterogeneous, multiple software stacks may be required. Additionally, when specific Hardware peripherals are used, the development of Hardware dependent Software (HdS) requires a long, fastidious and error prone development and debug cycle. This full day tutorial deals with challenges and opportunities for the programming of such complex devices.

- Prof. Wayne Wolf will introduce and survey principles for the programming of multicore LSI.
- Dr. Damir Jamsek will detail How to accelerate CAD applications with CUDA programming environment.
- Prof. Hiroyuki Tomiyama will introduce and survey principles for RTOS (real-time operating systems) for multicore LSI.
- Dr. Fabien Clermidy will explore programming future LSI based on Network on Chip.
Organizers: Masahiro Fujita – University of Tokyo, Japan
Speakers:
 • Masahiro Fujita – University of Tokyo, Japan
 • Alan J. Hu – University of British Columbia, Canada
 • Andy Chou – Coverity Inc., United States

Recently there has been significant progress in formal analysis on C/C++ programs. New bugs in Linux kernels, which have several million lines of codes, have been found by formal analysis methods. In embedded system designs, C-based hardware designs are becoming common, and the techniques developed for C/C++ are expected to be applied to hardware design descriptions as well. There are basically three approaches to the verification problem: static analysis based on local traces of the descriptions, model checking with automatic abstraction/reduction of the descriptions, and equivalence checking with efficient identification of the differences between the descriptions. With appropriate usages, all of the three approaches give practical values to designers, and large and real-life design descriptions could be formally analyzed. The point here is how and where the formal methods are applied. Concentrating on their practical aspects, this tutorial gives the state-of-the-art formal methods and implemented tools for C based design descriptions. The tutorial has the following presentations:

- Prof. Masahiro Fujita gives an overview of the three approaches for the formal analysis of C-based design descriptions.
- Dr. Andy Chou presents various static checking methods and implemented tools with their applications to real life C descriptions.
- Prof. Alan J. Hu presents model checking based formal verification of C-based design descriptions with various efficiency increasing techniques.
- Prof. Masahiro Fujita describes formal equivalence checking methods and implemented tools targeting designs under typical system level design flows.

Statistical timing analysis methods: The state-of-the-art SSTA methods and the patterns of their adoption in industry will be presented. Specifically, this tutorial will describe the use of SSTA as a multi-corner robustness checker.

Statistical/robust optimization: This tutorial will revisit the state of the art in statistical optimization methods for timing and power yield.
Section II: Circuit Aging Prediction and Resilient Design

- Circuit reliability analysis and prediction
- Test and validation for circuit and product reliability
- Latest design practices for resilience

This tutorial will conclude with a discussion on future reliability challenges, helping shed light on the need of resilient design techniques and tools.

Tutorial 6 (HALF DAY)
Monday, January 19, 14:00–17:00
Room 414+415

Recent Advances in Low-Leakage VLSI Design

Organizer: Youngsoo Shin
KAIST, Korea

Speaker: Youngsoo Shin
KAIST, Korea

Kaushik Roy
Purdue University, United States

This tutorial will discuss recent advances for designing low-leakage VLSI circuits, as well as challenges and opportunities for future research and development. The main focus will be on cell-based semi-custom design, where considering the interaction with other tools in standard design flow when new scheme is adopted is very important. The tutorial will start from leakage estimation considering process variations, which is important to further optimization and design planning. The next part of the tutorial will be minimizing leakage when circuit is in active, or in very short idle. Conventional multiple threshold voltage technique will be discussed, but recent advances in the area of sequential circuit design will be a focus. This includes the use of flip-flops of multiple gate-length and mixed threshold voltages, and adopting clock skew scheduling for further reducing leakage of sequential circuits. We will then go on to discuss fast power-gating circuits, including zigzag power-gating, multiple sleep modes, etc. Run-time power-gating will be discussed as well. In the third part of the tutorial, we will address several circuit techniques for reducing standby leakage. This includes standard power-gating, adaptive body-bias, dynamic voltage scaling, and combination of these. Again, the main focus will be on recent advances in these circuit techniques and how to employ these circuits in cell-based semi-custom design.

Memories continue to dominate the cost, performance and power of LSI designs. As we move towards sub-nanometer technologies, memories are also susceptible to soft-errors and thus affect the reliability of LSI designs. Traditionally memory issues are considered at a later stage in a system-level design flow, often resulting in designs that do not meet performance and/or power budgets, and with unnecessarily large memory footprints for the LSI designs. A memory-aware system level design flow can address these problems by customizing both the underlying memory architectures/organizations, as well as by transforming the system-level source code to generate an input for system-level design that is better tuned to the memory architectures and organizations. Such a “memory-aware” system level design flow can result in LSI designs exhibiting superior performance, power and memory footprint characteristics. This half-day tutorial will survey emerging memory architectural platforms and organizations, as well as software transformations that enable tuning of system-level applications to exploit the underlying memory organizations and architectures to improve performance, power and code size. Case studies on industrial LSI designs will demonstrate the efficacy of these approaches.

- Prof. Preeti Panda will survey traditional and emerging memory architectures and organizations, including caches, scratchpad memories, buffers, and describe possible ways to exploit them.
- Dr. Stylianos Mamagkakis will present CleanC, a set of techniques and tools that enable source code level parallelization and memory hierarchy/data reuse exploitation techniques/tools.

Organizers:

- **Nikil Dutt**
University of California, Irvine, United States

- **Stylianos Mamagkakis**
IMEC, Belgium

- **Preeti Panda**
Indian Institute of Technology, Delhi, India

Memories continue to dominate the cost, performance and power of LSI designs. As we move towards sub-nanometer technologies, memories are also susceptible to soft-errors and thus affect the reliability of LSI designs. Traditionally memory issues are considered at a later stage in a system-level design flow, often resulting in designs that do not meet performance and/or power budgets, and with unnecessarily large memory footprints for the LSI designs. A memory-aware system level design flow can address these problems by customizing both the underlying memory architectures/organizations, as well as by transforming the system-level source code to generate an input for system-level design that is better tuned to the memory architectures and organizations. Such a “memory-aware” system level design flow can result in LSI designs exhibiting superior performance, power and memory footprint characteristics. This half-day tutorial will survey emerging memory architectural platforms and organizations, as well as software transformations that enable tuning of system-level applications to exploit the underlying memory organizations and architectures to improve performance, power and code size. Case studies on industrial LSI designs will demonstrate the efficacy of these approaches.

- Prof. Preeti Panda will survey traditional and emerging memory architectures and organizations, including caches, scratchpad memories, buffers, and describe possible ways to exploit them.
- Dr. Stylianos Mamagkakis will present CleanC, a set of techniques and tools that enable source code level parallelization and memory hierarchy/data reuse exploitation techniques/tools.

Speakers:

- **Stylianos Mamagkakis**
IMEC, Belgium

- **Preeti Panda**
Indian Institute of Technology, Delhi, India

Monday, January 19, 14:00–17:00
Room 413

Tutorial 7 (HALF DAY)

Room 413

Memory Architectures and Software Transformations for System Level Design

Organizer: Nikil Dutt
University of California, Irvine, United States

Speakers:

- **Stylianos Mamagkakis**
IMEC, Belgium

- **Preeti Panda**
Indian Institute of Technology, Delhi, India

Memories continue to dominate the cost, performance and power of LSI designs. As we move towards sub-nanometer technologies, memories are also susceptible to soft-errors and thus affect the reliability of LSI designs. Traditionally memory issues are considered at a later stage in a system-level design flow, often resulting in designs that do not meet performance and/or power budgets, and with unnecessarily large memory footprints for the LSI designs. A memory-aware system level design flow can address these problems by customizing both the underlying memory architectures/organizations, as well as by transforming the system-level source code to generate an input for system-level design that is better tuned to the memory architectures and organizations. Such a “memory-aware” system level design flow can result in LSI designs exhibiting superior performance, power and memory footprint characteristics. This half-day tutorial will survey emerging memory architectural platforms and organizations, as well as software transformations that enable tuning of system-level applications to exploit the underlying memory organizations and architectures to improve performance, power and code size. Case studies on industrial LSI designs will demonstrate the efficacy of these approaches.

- Prof. Preeti Panda will survey traditional and emerging memory architectures and organizations, including caches, scratchpad memories, buffers, and describe possible ways to exploit them.
- Dr. Stylianos Mamagkakis will present CleanC, a set of techniques and tools that enable source code level parallelization and memory hierarchy/data reuse exploitation techniques/tools.

Related Tutorials:

TUTORIAL 1
Monday, January 19, 9:30–17:00
Room 411+412

FULL-DAY Tutorial

Room 413

Software Development and Programming of Multicore LSI

HALF-DAY Tutorials

TUTORIAL 2
Monday, January 19, 9:30–12:30
Room 413

Formal Methods for C-Based Embedded System Design Verification

TUTORIAL 3
Monday, January 19, 9:30–12:30
Room 414+415

Statistical Design on the Verge of Maturity: Revisiting the Foundation

TUTORIAL 4
Monday, January 19, 9:30–12:30
Room 416+417

Circuit Reliability: Modeling, Simulation, and Resilient Design Solutions

Section I: Reliability Mechanisms and the Impact on IC Design

TUTORIAL 5
Monday, January 19, 14:00–17:00
Room 416+417

Circuit Reliability: Modeling, Simulation, and Resilient Design Solutions

Section II: Circuit Aging Prediction and Resilient Design

TUTORIAL 6
Monday, January 19, 14:00–17:00
Room 414+415

Recent Advances in Low-Leakage VLSI Design

TUTORIAL 7
Monday, January 19, 14:00–17:00
Room 413

Memory Architectures and Software Transformations for System Level Design
<table>
<thead>
<tr>
<th>Time</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>Opening Session & Keynote Address I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15</td>
<td>1A (Room 411+412) On-Chip Communication Architectures</td>
<td>1B (Room 413) Dealing with Thermal Issues</td>
<td>1C (Room 414+415) Advances in Behavioral Synthesis</td>
<td>1D (Room 416+417) University Design Contest</td>
</tr>
<tr>
<td>12:20</td>
<td>Lunch Break / University Design Contest Discussion at ASP-DAC Site (Room 418)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:20</td>
<td>2A (Room 411+412) MPSocC and IP Integration</td>
<td>2B (Room 413) Power Analysis and Optimization</td>
<td>2C (Room 414+415) Logic and Arithmetic Optimization</td>
<td>2D (Room 416+417) Special Session: EDA Acceleration Using New Architectures</td>
</tr>
<tr>
<td>15:35</td>
<td>Coffee Break (Room 418)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:55</td>
<td>3A (Room 411+412) System-Level Design of 3D Chips and Configurable Systems</td>
<td>3B (Room 413) Advances in Timing Analysis and Modeling</td>
<td>3D (Room 416+417) Special Session: Hardware Dependent Software for Multi-Core Embedded Systems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Keynote Address II (Small Auditorium, 5F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15</td>
<td>4A (Room 411+412) System Level Architectures</td>
<td>4B (Room 413) Beyond Traditional Floorplanning and Placement</td>
<td>4C (Room 414+415) Signal/Power Integrity and Simulation</td>
<td>4D (Room 416+417) Special Session: Challenges in 3D Integrated Circuit Design</td>
</tr>
<tr>
<td>12:20</td>
<td>Lunch Break / Student Forum (Room 418)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:20</td>
<td>5A (Room 411+412) Energy-Aware System Level Design Methodology</td>
<td>5B (Room 413) Design for Manufacturing and Reliability</td>
<td>5C (Room 414+415) Analog, RF and Mixed-Signal CAD</td>
<td>5D (Room 416+417) Designers’ Forum: Consumer SoC</td>
</tr>
<tr>
<td>15:35</td>
<td>Coffee Break (Room 418)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:55</td>
<td>6A (Room 411+412) System Level Simulation and Modeling</td>
<td>6B (Room 413) Chip and Package Routing Techniques</td>
<td>6D (Room 416+417) Designers’ Forum Panel: ESL Design Methods</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Keynote Address III (Small Auditorium, 5F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15</td>
<td>7A (Room 411+412) Compilation Techniques for Embedded Systems</td>
<td>7B (Room 413) Sequential Design Verification</td>
<td>7C (Room 414+415) Scan Test Generation</td>
<td>7D (Room 416+417) Designers’ Forum: Analog/RF Circuit Designs</td>
</tr>
<tr>
<td>12:20</td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:20</td>
<td>8A (Room 411+412) High-Level Design and Scheduling</td>
<td>8B (Room 413) Emerging Design Methodologies and Applications</td>
<td>8C (Room 414+415) Verification, Test, and Yield</td>
<td>8D (Room 416+417) Designers’ Forum Panel: Near-Future SoC Architectures</td>
</tr>
<tr>
<td>15:35</td>
<td>Coffee Break (Room 418)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information

Proceedings:
ASP-DAC 2009 will be producing two versions of the ASP-DAC 2009 Proceedings; a bound paper version and a CD-ROM version. All papers will be included in both versions. Conference registration in any of the categories will include copies of both versions of the ASP-DAC 2009 Proceedings. Additional Proceedings will be available for purchase at the Conference. Prices are as follows:

- **Paper Form:** ¥5,000
- **CD-ROM Form:** ¥2,000

Both versions of the proceedings will also be available for purchase after the conference; please contact IEEE for the bound version and ACM SIGDA for the CD-ROM version.

Banquet:
Conference registrants are invited to attend a banquet to be held on January 21, 2009. The banquet will be held from 18:30 to 20:30 at the fifth floor of conference center. Regular Member and Non-member Conference registrants receive a ticket to the banquet when they register at the conference. Full-time students, Designers’ Forum-only registrants, and Tutorial-only registrants wishing to attend the banquet will be required to pay ¥5,000 for a ticket when they register on site.

Visa Application:
Without a legal visa, foreign participants may be denied entry into Japan. Please contact your nearest Japanese embassy in order to ensure entry. Notice that the ASP-DAC 2009 Organizing Committee issues the invitation letters and supports the VISA applications only for presenters of the conference papers. All the other attendees have to apply for VISA through their travel agents or by yourself. In some cases it may take two months to obtain a legal visa. The following Web page of Japanese embassy may be helpful.

http://www.mofa.go.jp/jinfo/visit/visa/

Insurance:
The organizer cannot accept responsibility for accidents which might occur. Delegates are encouraged to obtain travel insurance (medical, personal accident, and luggage) in their home country prior to departure.

Climate:
The temperature in Yokohama during the period of the Conference ranges between 5°C and 12°C.

Currency Exchange:
Only Japanese Yen (¥) is accepted at ordinary stores and restaurants. Certain foreign currencies may be accepted at a limited number of hotels, restaurants and souvenir shops. You can exchange your currency for Japanese Yen at foreign exchange banks and other authorized money exchange offices with your passport.

Electricity:
Electrical appliances are supplied on 100 volts in Japan. The frequency is 50 Hz in eastern Japan including Tokyo, Yokohama and 60 Hz in western Japan including Kyoto and Osaka.

Shopping:
The business hours of most department stores are from 10:00 to 20:00. They are open on Sundays and national holidays, but may close on some weekday. Business hours of retail shops differ from one another, but most shops operate from 10:00 to 20:00. Shops are open on Sundays and national holidays.

Sightseeing:
Participants can get sightseeing information at the JTB Travel desk in the Conference site during the Conference period.

- **CHINA TOWN**
 Being the largest Chinese settlement in Japan, Chinatown is always alive with people who come to enjoy Chinese food. It is also a fun place for shopping or just walking around its many streets and alleys lined with colorful restaurants, shops overflowing with Chinese goods and stores that sell exotic ingredients and Chinese medicines.
 LANDMARK TOWER
 296 meters high with 70 stories above ground and three levels underground. It is Japan’s tallest skyscraper. A 40-second ride on the world’s fastest elevator skyrockets you to the 69th floor’s Sky Garden, the highest observatory in Japan.
 SANKEIEN GARDEN
 A purely Japanese-style landscape garden. Accenting the main garden is an impressive three-story pagoda and graceful garden bridges. Inside contains several old houses and farm buildings as well as Important Cultural Properties such as Rinshunkaku Villa and Chousukaku House.

- **MARITIME MUSEUM**
The site of the previous Nippon Maru, the former training ship for Japan’s Maritime Defense Force. The Yokohama Maritime Museum, which specializes in ports and ships, is located next to the Nippon Maru.
 NARITA AIRPORT
 YES ! TOKYO
 http://www.tcva.or.jp/english/

Other Information:
- **JAPANTOURIST ORGANIZATION**
 http://www.jnto.go.jp/
- **YOKOHAMA CONVENTION & VISITORS BUREAU**
 http://www.city.yokohama.jp/eng/tourism/
- **OTHER INFORMATION**
 http://www.city.yokohama.jp/ne/info/hotspotE.html
 http://www.mofa.go.jp/jinfo/visit/visa/
Access to Pacifico Yokohama

By Train
- Shibuya Sta.: Tokyo Toyoko Line, Limited Express 30min.
- Shinjuku Sta.: JR Shonan-Shinjuku Line 20min.
- Tokyo Sta.: JR Tokaido Line 20min.
- Shinagawa Sta.: Keikyu Express, Limited Express 15min.
- Shin Yokohama Sta.: JR Yokohama Line 15min.

By Bus
- From Porta shopping mall on the east exit:
 - Kikuna Sta.: JR Tokaido Line, JR Keihin-Tohoku Line 10min.
 - JR Yokohama Line 3min.
 - Yokohama Subway 3min.

By Taxi
- From taxi pool at 2nd basement of Porta shopping mall on the east exit:
 - Shibuya Sta.: by Taxi 7min.
 - Tokyo Sta.: by Taxi 7min.
 - Shinjuku Sta.: by Taxi 7min.
 - Shinagawa Sta.: by Taxi 7min.
 - Shin Yokohama Sta.: by Taxi 7min.
 - JR Yokohama Line 3min.
 - JR Keihin-Tohoku Line 3min.
 - JR Yokohama Line 3min.
 - JR Keihin-Tohoku Line 3min.
 - JR Yokohama Line 3min.
 - JR Keihin-Tohoku Line 3min.
 - JR Yokohama Line 3min.
 - JR Keihin-Tohoku Line 3min.
 - JR Yokohama Line 3min.

By Car
- From Tokyo:
 - Metropolitan Expressway 70min.
 - Tomei Expressway 70min.

Parking Lot
- Minato Mirai Public Parking Lot:
 - Capacity: 1,200
 - Standard-sized cars only
 - Open 24 hours
 - Rates: Standard-sized car 260yen/30min.

By Air
- Narita Airport:
 - JR Narita Express 50min.
 - Airport Limousine Bus 30min.

- Haneda Airport:
 - Keikyu Express 24min.
 - Airport Limousine Bus 30min.

Traffic Information

Driving To Pacifico
- From Tokyo:
 - Toward Yokohama Park, Yokohama Route 15min.
 - Toward Yokohama (over Bay bridge), Wangen Route 15min.

Parking Lot
- Minato Mirai Public Parking Lot:
 - Capacity: 1,200
 - Standard-sized cars only
 - Open 24 hours
 - Rates: Standard-sized car 260yen/30min.

- Box/Large Vehicle Parking Lot:
 - Capacity: 40
 - Open 24 hours
 - Rates: Large vehicle 500yen/30min.

Venue Map/Room Assignment

- **EDS Fair 2009** and **System Design Forum 2009** are held at "Exhibition Hall/Annex Hall." (2min. walk from Conference Center.)

- **EDS Fair 2009 and Conference Center** are held at "Exhibition Hall/Annex Hall." (2min. walk from Conference Center.)
Electronic Design and Solution Fair 2009

The Japan Electronics and Information Technology Industries Association (JEITA) will be hosting the Electronic Design and Solution Fair 2009 at the Pacifico Yokohama on January 22 (Thursday) and 23 (Friday), 2009.

The goal of EDSFair is to introduce and disseminate information about the latest design solutions, design technologies and EDA technologies required to produce the electronic systems and semiconductors for the IT applications that will form the foundation of the future information society, whose citizens will enjoy a ubiquitous computing environment. The fair thus contributes to the development of electronics and other IT-related industries. This will be the 16th time the fair has taken place, including its previous incarnation as the EDA TechnoFair.

JEITA forecasts that this year Japan’s electronics industry will continuously have achieved a 3% increase over last year, growing for three consecutive years, reaching more than ¥21 trillion since 2006 when Japan’s electronics industry recovered to a market size of ¥20 trillion for the first time in 5 years. Also, with the worldwide demand expansion for digital products, semiconductors and electronic components are expected to make sound growth and be placed more expectations on the related development of design technology and service.

“Design the Future! Cutting edge Technologies Excite the Sense” is the theme of this Electronic Design and Solution Fair 2009. You will find on display world-class, cutting-edge technologies tailored for an age that demands new solutions. There are a variety of seminars and a conference offering a wide range of up-to-date information. There are open sessions catering to young engineers, new zones of both verification and design flows in the fields of SystemC and SystemC Working Group.

It is the fervent desire of all of us in JEITA that EDSFair will contribute to enhancing the design technologies available to Japan’s electronic and IT industries, and also that both exhibitors and visitors will be able to make the best use of the opportunities afforded by this event for conducting effective and fruitful exchanges of information, and for generating new business. We greatly look forward to your visit at the upcoming EDSFair 2009.

Etsuhiko Shoyama
Chairman
Japan Electronics and Information Technology Industries Association (JEITA)

System Design Forum 2009 at EDS Fair

Friday, January 23, 10:00–12:00, 12:45-16:30
Annex Hall, Pacifico Yokohama

Registration: On-line registration will be available from December 2008 at http://www.edsfair.com/e
Sponsor: Japan Electronics and Information Technology Industries Association (JEITA)
Support: Open SystemC Initiative (OSCI)

JEITA EDA Technical Committee (EDA-TC) will host System Design Forum 2009 at Pacifico Yokohama, Japan. This year’s forum, consisting of 2 sessions, will be held January 23, 2009.

The first session (10:00–12:00) will cover system-level design language (SystemC), some effective methods for addressing the design crisis of SoC (System-on-a-Chip), Easy-to-understand explanations of the latest standardization, STARC transaction-level modeling Guideline and introduction of the cutting-edge design examples will be given for SystemC.

The second session (12:45–16:30) will focus on predict of 32 nm process variations and design methodology in statistics from the perspective of cutting-edge, and introduce the current state of design methodology on considering variations.

Session 1: SystemC Users Forum 2009, January 23 (10:00–12:00)
Chair: T. Hasegawa (JEITA SystemC Working Group)
On December 12, 2005, IEEE approved SystemC (IEEE Std. 1666-2005). Since then, SystemC that is a C-based language, has been widely used as a standard language for both verification and system-level design flows in the fields of both verification and design. Included in this session are: 1) Update of SystemC current status and road map, presented by OSCI, 2) Easy-to-understand explanations of STARC transaction-level modeling Guideline, and 3) Examples of design-related SystemC.

Session 2: Nano-Scale Physical Design Forum, January 23 (12:45-16:30)
Chair: T. Kanamoto (JEITA Nano-Scale Physical Design Working Group)
Along with recent advances in semiconductor devices and interconnection technologies, new issues are emerging in current design methodology. Various approaches, such as new
libraries or design schemes, have been developed to solve these issues but left un-standardized even after those become commonplace. It prevents semiconductor manufacturers and their customers from smooth exchanging design information.

In this session, the following topics will be presented to overview the current status of variation-aware design methodology: 1) Variations of device characteristics in the process of next-generation, 2) Variations of circuit characteristics in the process of next-generation, 3) Process variations of SRAM and design methodology in statistics from the perspective of cutting-edge, 4) Design methodology for reducing variation and variations in statistics.

Note: Most of the presentations at the System Design Forum 2009 will be given in Japanese.

For more information, visit the following web site:
http://www.edsfair.com/e/.