Rule-Based Optimization of Reversible Circuits

Mona Arabzadeh*, Mehdi Saeedi, Morteza Saheb Zamani

Email: {mona_arabzadeh, msaeedi, szamani}@ aut.ac.ir

Quantum Design Automation Lab, Computer Engineering Department

Amirkabir University of Technology

Tehran, Iran

ASP-DAC 2010

Outline

- I Introduction
- Basic Concepts
- Previous Work
- Proposed Methods
- Experimental Results
 - Conclusions

Power dissipation

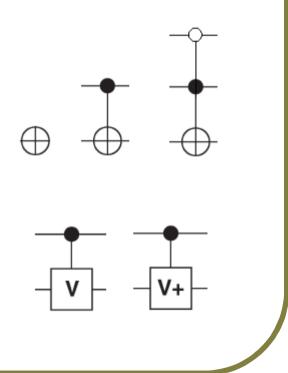
Rolf Landauer (1961)

- Every lost bit causes an energy loss
- Using conventional irreversible logic gates leads to energy dissipation
 - regardless of the underlying circuit

Motivation

- I Decrease in power dissipation
- Application in
 - Low-power CMOS design
 - Quantum computing
 - Each unitary quantum gate is intrinsically reversible

Basic Concepts


Boolean reversible functions

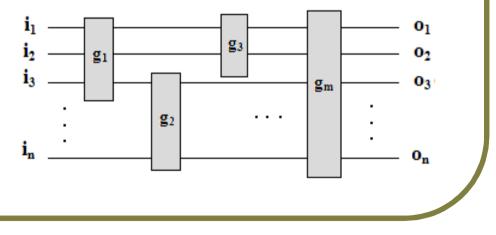
- *n*-input, *n*-output,
- Unique output assignment
- Example: a 3-input, 3-output
 - I function (2,7,0,1,6,3,4,5)

a ₁	a ₂	a ₃		\mathbf{f}_1	\mathbf{f}_2	f3	
0	0	0	0	0	1	0	2
0	0	1	1	1	1	1	7
0	1	0	2	0	0	0	0
0	1	1	3	0	0	1	1
1	0	0	4	1	1	0	6
1	0	1	5	0	1	1	3
1	1	0	6	1	0	0	4
1	1	1	7	1	0	1	5

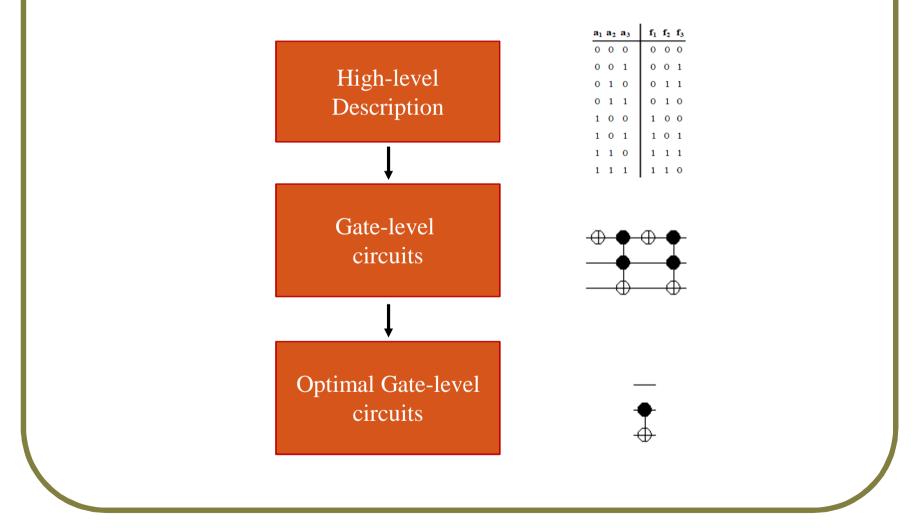
Basic Concepts

- Reversible gate
- Various reversible gates
 - C^mNOT gates
 - NOT, CNOT, C²NOT (Toffoli), ...
 - Positive controls
 - Negative controls
 - Controlled-V
 - Controlled-V+

Basic Concepts


Elementary gates:

NOT, CNOT, controlled-V, and controlled-V+ (with positive controls)


Quantum cost:

The number of elementary gates required for simulating a given gate

- Reversible circuit:
 - A set of reversible gates

Reversible Circuits: Synthesis and Optimization

Previous Work

A set of local transformation rules [4]
Complete Set

Change any two equivalence circuits to each other

Developing a design theory

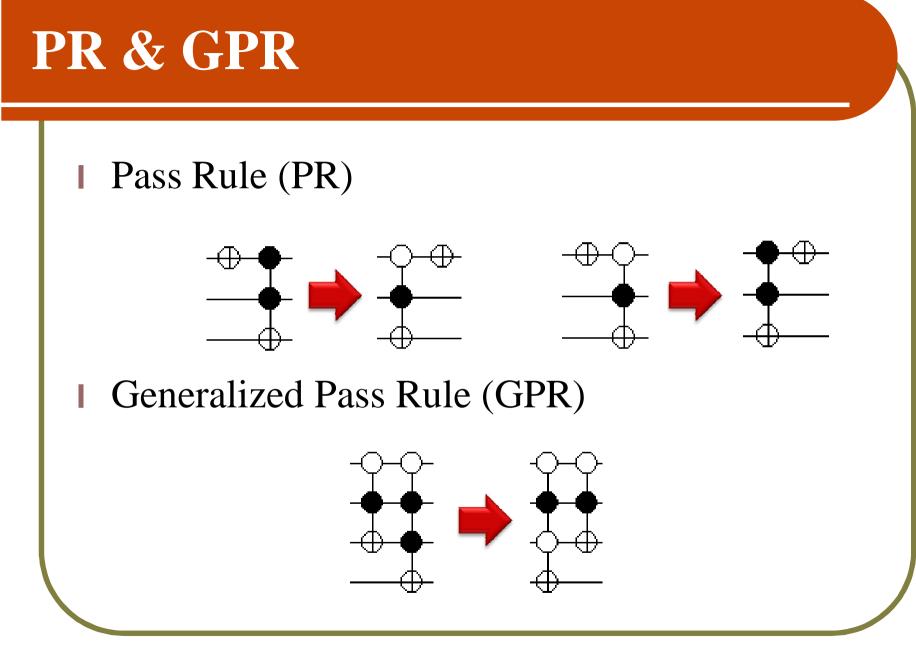
Improving Boolean reversible cost

Previous Work

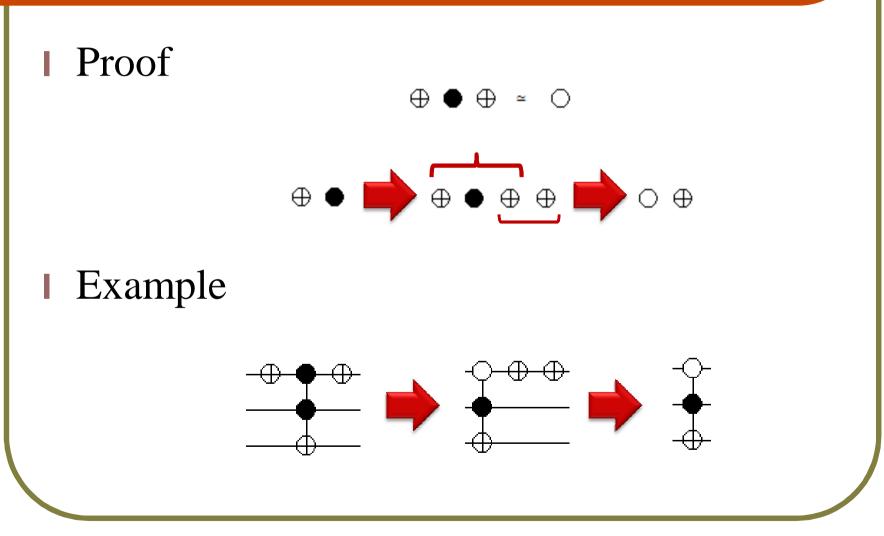
- A set of predefined patterns: *Templates* [6,8,10] Template *T* :
 - A circuit with *m* gates
 - I Identity function
 - Find the first k (k > m/2) gates in a circuit
 - A reverse of *m*-*k* gates can be applied instead of the initial *k* gates
 - Reduce gate count or quantum cost

Developed data structures [9]

Generate and store optimal circuits


All reversible functions of size 3

I Many of four inputs circuits

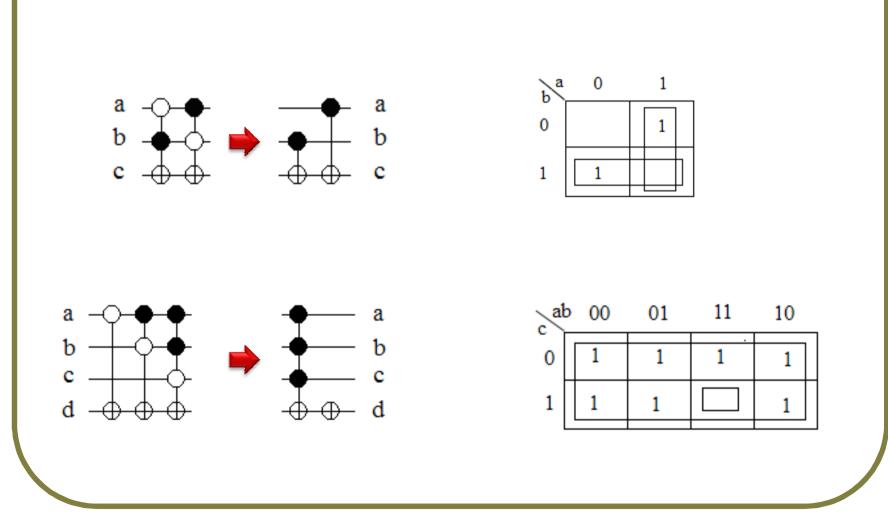

 Examined less than 5 variables sub-circuits
 The optimal implementation is explored in a preconstructed library

Proposed Methods

- **NOT** Reduction
 - Pass Rule (PR)
 - Generalized Pass Rule (GPR)
- Gates with Common Targets
 - Common-Target Rule (CTR)
 - Restricted CTR (R-CTR)

PR & GPR

Gates with Common Targets


Using Kmap for optimization

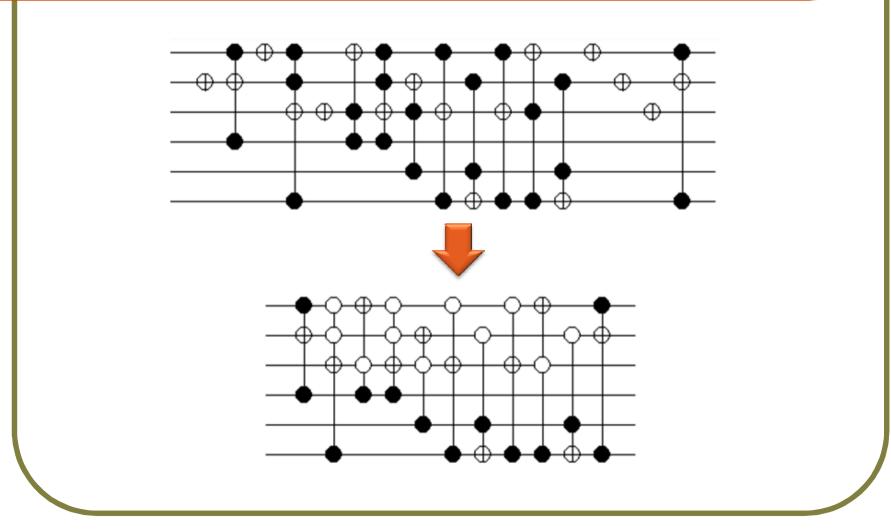
- For sub-circuits with common targets
- A $C^{n-1}NOT$ gate can be represented by a Boolean expression with n-1 inputs and one output
 - Gate controls => Inputs
 - Gate target => Output
- Each group in Kmap defines a gate with *n*-*p* controls
 - $n \Rightarrow$ Sub-circuit size
 - $2^p \Rightarrow$ Group size

CTR & R-CTR

- Common Target Rule (CTR)
 - Each reversible sub-circuit of size *n* with
 common targets can be optimized by using
 Kmap
- Restricted CTR (R-CTR)
 - CTR for 2-input sub-circuits

CTR Examples

21 January 2010


Experimental Results

# Circuits	Number of inputs		Quantum cost			
		specification	[15]	Ours	Garbage	Decrease percent
1	3	(1,0,3,2,5,7,4,6)	18	17	-	5.5%
2	3	(7,0,1,2,3,4,5,6)	7	7	-	0%
3	3	(0,1,2,3,4,6,5,7)	15	15	-	0%
4	3	(0,1,2,4,3,5,6,7)	27	27	-	0%
5	4	(0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15)	195	131	-	32.8%
6	3	(1,2,3,4,5,6,7,0)	10	7	-	30%
7	4	(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0)	25	20	-	20%
8	4	(0,7,6,9,4,11,10,13,8,15,14,1,12,3,2,5)	12	12	-	0%
9	3	(3,6,2,5,7,1,0,4)	32	29	-	9.3%
10	3	(1,2,7,5,6,3,0,4)	35	26	-	25.7%
11	3	(4,3,0,2,7,5,6,1)	37	29	-	21.6%
12	3	(7,5,2,4,6,1,0,3)	28	19	-	32.1%
13	4	(6,2,14,13,3,11,10,7,0,5,8,1,15,12,4,9)	214	136	-	36.4%

Experimental Results (Cont.)

# Circuits	Circuits	Number	Quant	um cost	Carbona	Decrease
		of inputs	[10]	Ours	Garbage	percent
1	3_17	3	14	13	-	7.14%
2	4_49	4	32	30	-	6.25%
3	t-add-8	24	322	314	-	2.48%
4	hwb5	5	104	101	-	2.88%
5	hwb6	6	142	140	-	1.40%
6	hwb7	7	2,521	2,516	True	0.20%
7	hwb8	8	6,709	6,687	True	0.33%
8	hwb9	9	20,224	20,207	True	0.08%
9	hwb10	10	52,245	52,225	True	0.04%
10	hwb11	11	121,840	121,830	True	0.008%
11	mod5adder	6	77	71	-	7.80%
12	rd53	7	65	62	-	4.61%

Experimental Results (Cont.)

Conclusions

- An optimization approach for reversible circuits
 - A set of rules
 - Both negative and positive control Toffoli gates
- Reduce NOT gates
- Karnaugh map-based optimization method

