Variation Tolerant Logic Mapping for Crossbar Array Nano Architectures

Cihan Tunc and Mehdi B. Tahoori

Karlsruhe Institute of Technology, Germany Northeastern University, Boston, USA

Northeastern University

- Introduction and Motivation
- Definitions
- Algorithms
- Defect Tolerance
- Experimental Results
- Conclusion

Introduction

- Increasing challenges in CMOS downscaling
 - More power dissipation
 - Parasitic issues
 - Direct tunneling
 - More complex tools resulting in higher costs
- Alternative: Emerging Nanotechnologies
 - Higher device density
 - Less expensive in manufacturing
 - Manufacturing with bottom-up stochastic self assembly, nanoimprinting, etc.

Nanowires for p-n diode rectifiers and FETs

 Crossbars are implemented with two perpendicular nanowire sets

A crosspoint

Diode based crossbars

Architectures

- Using diode based crossbars
 - CMOL [Likharev_05]
 - NanoFabric [Goldstein_01]
 - nanoPLA [DeHon_04]

NanoPLA, [DeHon_04]

Architectures

Using FET based crossbars:
 NOR blocks for nanoPLA FET a

FET arrays with switch blocks

Motivation

- Basic, regular, and stochastic manufacturing
- High defect rate \rightarrow low yield rate
 - Open or shorted nanowires
 - Defective crosspoints
- High variation in manufacturing process
 - Resistance, capacitance, etc.
 - Results in delay variation
- Variation is extremely larger than CMOS technology
 100 200% compared to 10-15%

Objective

- Variation aware mapping for FET-based crossbars
- Variations are delay differences of individual FETs
- Different optimization goals and different constraints
- Defect tolerant mapping

- Introduction and Motivation
- Definitions
- Algorithms
- Defect Tolerance
- Experimental Results
- Conclusion

Function Matrix (FM)

The logic function to be mapped to a crossbar.

FM_{i,j} -
 1, if output j depends on input i
 0, otherwise

Variation Matrix (VM)

 Delay of individual crosspoints using lumped delay modeling

Variation Matrix

- VM entries extracted by a characterization testing procedure
 - Delay testing
 - Taking advantage of programmability of crossbars
 - All crossbar outputs read simultaneously
 - Both falling and rising transitions applied through each crosspoint
 - One test configuration
 - All crosspoints are activated (all FM elements are '1')
 - For each input, two controlling transitions are applied
 - All other inputs are stable at the non-controlling values

Variation Matrix & Function Matrix

- Variation Matrix: Property of individual crossbars and different for any crossbar
- Function Matrix: Property of the logic function and fixed for all crossbars

VM 1				VM 2					FM			
55	10	45	45	10	50	20	35		1	0	0	1
20	5	40	10	40	55	5	90		0	1	0	1
95	75	15	15	90	65	35	45		1	1	0	0
45	35	50	5	70	60	65	50		0	1	0	0

Input/Output Mapping Vectors

For the mapping of a function to a n×m crossbar

- Input Mapping Vector (IMV)
 IMV[i] = j, if input x_i is assigned to horizontal nanowire j
- Output Mapping Vector (OMV)
 OMV[i] = j, if output f_i is assigned to vertical nanowire j

	N	lapp	oing	1		Mapping 2				
I_1	1	0	0	1	I ₂	0	1	0	1	
I ₂	0	1	0	1	I ₃	0	1	1	0	
I ₃	1	1	0	0	I_1	0	0	1	1	
I_4	0	1	0	0	I ₄	0	1	0	0	
	O ₁	O ₂	O ₃	O ₄		O ₃	O ₂	O ₁	O ₄	

For Mapping 1: IMV = {1, 2, 3, 4} OMV = {1, 2, 3, 4}

For Mapping 2: IMV = {3, 1, 2, 4} OMV = {3, 2, 1, 4}

Cost Function

- Based on VM and actual mapping (FM, IMV/OMV)
- For every output f_i $C(f_i) = \sum_{k=1}^{n} FM[k][i] \times VM[IMV[k]] [OMV[i]]$

	VM				F	Μ		For $IMV = \{1, 2, 3, 4\}$
55	10	45	45	1	0	0	1	$O[V]V = \{1, 2, 3, 4\}$
20	5	40	10	0	1	0	1	Cost $(f_1) = 55 + 95 = 150$
95	75	15	15	1	1	0	0	$Cost(f_2) = 5 + 75 + 55 - 110$ Cost(f_2) = 0
15	35	50	5	0	1	0	0	$Cost(f_4) = 45 + 10 = 55$
				f ₁	f_2	f ₃	f_A	17

Optimization Goals

- Objective 1: Minimize the maximum delay
- Objective 2: Balance all output delays

VM			FM				For $IMV = \{1, 2, 3, 4\}$	
55	10	45	45	1	0	0	1	$OIVIV = \{1, 2, 3, 4\}$
20	5	40	10	0	1	0	1	Cost $(f_1) = 55 + 95 = 150$
95	75	15	15	1	1	0	0	$Cost(f_2) = 5 + 75 + 35 = 11$ Cost(f_2) = 0
45	35	50	5	0	1	0	0	$Cost (f_3) = 45 + 10 = 55$
				f ₁	f_2	f ₃	f₄	

→ Objective 1: 150 (Minimize maximum cost)
 → Objective 2: 150 - 55 = 95 (Minimize maximum difference)

- Introduction and Motivation
- Definitions
- Algorithms
- Defect Tolerance
- Experimental Results
- Conclusion

Exhaustive Search

- Try all possible solutions and find the best solution
- There are n! x m! possible solutions for n x m crossbar
- Intractable for large crossbars
- We require combinatorial optimization methods: Simulated Annealing

Simulated Annealing

- A general-purpose optimization method
 Widely used in VLSI design automation
- Based on energy distribution minimization of metals
 First heats and then cools gradually
- Perturbations are random
- Acceptance of new perturbations is
 - $\triangle cost < 0 or$
 - $\triangle \text{cost} > 0$ with probability $e^{-\triangle \text{cost/temp}}$
 - To avoid local optimums

Simulated Annealing Algorithm

Moves

Swapping in only Input Vector, OMV remains same:

 $IMV = \{1, 2, 3, 4\} \implies new IMV = \{4, 2, 3, 1\}$ $new OMV = \{1, 2, 3, 4\}$

	FM								
I ₁	1	0	0	1					
I_2	0	1	0	1					
I ₃	1	1	0	0					
I_4	0	1	0	0					
I/O	O ₁	O ₂	O ₃	O ₄					

Moves

Swapping in only Output Vector, IMV remains same:

IMV = {1, 2, 3, 4} OMV = {1, 2, 3, 4}

	FM							
I ₁	1	0	0	1				
I_2	0	1	0	1				
I_3	1	1	0	0				
I_4	0	1	0	0				
I/O	O ₁	$O_1 O_2 O_3 O_4$						

	Mapping								
I ₁	1	0	1	0					
I_2	0	1	1	0					
I_3	1	1	0	0					
I_4	0	1	0	0					
I/O	O ₁	O ₂	O ₄	O ₃					
			Swa						

24

Moves

Swapping in both Input and Output Vectors:

- Introduction and Motivation
- Definitions
- Algorithms
- Defect Tolerance
- Experimental Results
- Conclusion

Defect Tolerance

- Sources of defects:
 - Nanowires may be broken or misaligned
 - Crosspoints may be defective
- All defects are modeled by crosspoint defects
 - Stuck-open crosspoint: cannot be activated
 - Crosspoint is unusable.
 - Stuck-closed crosspoint: cannot be *deactivated*
 - All nanowires and crosspoints intersecting at this crosspoint are unusable.

Defect Tolerance

- Infinite VM entries for defective crosspoints

 (1, 1) and (4, 2) stuck-open
 (3, 3) stuck-close
- Infinite cost when defective
- Simulated Annealing will discard defective crosspoints
 - $\triangle \text{Cost} = \infty$
 - $-e^{(-\infty/temperature)} = 0$

Defects in VM							
∞	10	∞	45				
20	5	∞	10				
∞	∞	∞	∞				
45	∞	∞	5				

Stuck open

Stuck closed

28

- Introduction and Motivation
- Definitions
- Algorithms
- Defect Tolerance
- Experimental Results
- Conclusion

Experiment Setup for Optimization

Two Objectives

- Objective 1: Minimizing maximum cost

- Objective 2: Balancing output delays
- Comparison with exhaustive search
 - 6x6 crossbars
 - Crosspoint Usage Ratio (CR): 30% and 40%
 - Output Usage Ratio (OR): 60%
 - 500 random crossbars
- Cost reduction for 16x16 crossbars
 - Crosspoint Usage ratio (CR): 20%, 30%, and 40%
 - Output Usage Ratio (OR): 80%
 - 10,000 random crossbars

Experiment Setup for Defect Tolerance

- Success for defect free mapping
 - 8x8, 16x16, and 32x32 crossbars
- Different Constraints
 - Crosspoint Usage Ratio (CR): 20%, 30%, 40%
 - Output Usage Ratio (OR) : 80%
- Different Defect Rates: 5% and 10%
- 1,000 random crossbars generated

 Exhaustive search vs. Simulated Annealing for 6x6 crossbars

	Ob	jective ²	Objective 2			
	RAND	EXH	SA	RAND	EXH	SA
CR = 30%	189.30%	-	3.57%	2.325%	-	50%
CR = 40%	144.20%	—	2.60%	1,917%	-	50%
Runtime Overhead	—	2320x	1	—	1940x	1

- RAND : Variation Unaware Mapping EXH : Exhaustive Search
- SA: Simulated Annealing

Cost reduction for 16x16 crossbars

	0	bjectiv	/e 1	Objective 2			
CR	IN	OUT	BOTH	IN	OUT	BOTH	
20%	1.61	1.85	1	2.82	3.25	1	
30%	1.52	1.56	1	2.40	2.41	1	
40%	1.47	1.38	1	2.49	2.17	1	

IN: Move in only IMV OUT: Move in only OMV BOTH: Move in both IMV and OMV CR = Crosspoint Usage Ratio

Defect free mapping success

Defect Rate = 5%

Defect free mapping success

Defect Rate = 10%

- Introduction and Motivation
- Definitions
- Algorithm
- Defect Tolerance
- Experimental Results
- Conclusion

Conclusion

- Low controllability in nanomanufacturing
 - High defect rate
 - Extreme parametric variation
- Variation Tolerant Logic Mapping technique
 - For FET-based crossbars
 - Programmability and interchangeability of crossbars
 - Formulated using Simulated Annealing
 - Efficient also for defect tolerance

Variation Tolerant Logic Mapping for Crossbar Array Nano Architectures

Cihan Tunc and Mehdi B. Tahoori

Karlsruhe Institute of Technology, Germany Northeastern University, Boston, USA

rtheastern University