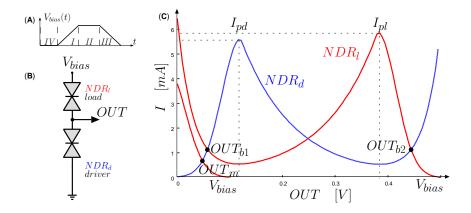
The 15th Asia and South Pacific Design Automation Conference January 21, 2010

Generalised Threshold Gate Synthesis based on AND/OR/NOT Representation of Boolean Function

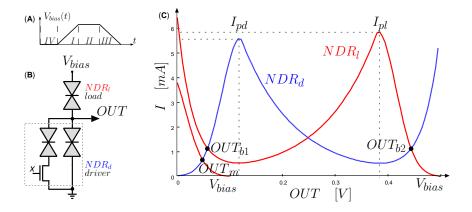
Marek A. Bawiec (speaker), Maciej Nikodem Wrocław University of Technology

NDRs in MOBILE Logic Circuits



NDR Negative Differential Resistance MOBILE Monostable-Bistable Transition Logic Element

NDRs in MOBILE Logic Circuits



The simplest function - an inverter

NDRs in MOBILE Logic Circuits

Circuit Structures

linearly separable Boolean functions

threshold gate (TG)

- any arbitrary Boolean function
 - multi–threshold threshold gate (MTTG)
 - generalized threshold gate (GTG)

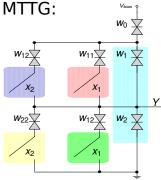
Synthesis Algorithms

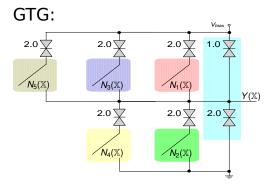
- no synthesis algorithm for MTTG
- synthesis algorithm for GTG, but:
 - input function in Reed–Muller form
 - lower number of branches possible
 - lower number of switching elements possible

New Synthesis Algorithm

- input in SOP form
- improvement of circuit structure
 - simpler functions
 - lower number of branches
- algorithm efficiency

MTTG vs. GTG





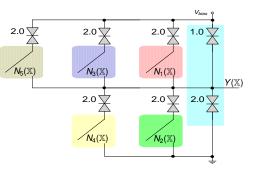
- each branch one NDR with one transistor
- needs different NDRs (weights)
- implements multi-threshold threshold function directly
- number of NDRs increases quadratically with number of inputs

- each branch one NDR and serial-parallel transistors network
- uniform NDRs elements but one
- implements any *n*-variable Boolean function
- number of NDRs increases proportionally with number of inputs

GTG – Formal Model

IF:

- $N_i(\mathbb{X})$ -unate function
- "upper" functions: N_i(X) where i mod 2 = 1
 "lower" functions: N_i(X) where i mod 2 = 0



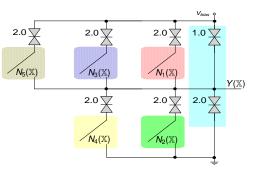
THEN:

$$Y_{l}(\mathbb{X}) = \begin{cases} 0 & l = 0\\ Y_{l-1}(\mathbb{X}) + N_{l}(\mathbb{X}) & l = 2k - 1\\ Y_{l-1}(\mathbb{X})\overline{N_{l}(\mathbb{X})} & l = 2k \end{cases}$$

GTG – Formal Model

IF:

- $N_i(\mathbb{X})$ -unate function
- "upper" functions: N_i(X) where i mod 2 = 1
 "lower" functions: N_i(X) where i mod 2 = 0
- $N_i(\mathbb{X})N_{i+j}(\mathbb{X}) = N_{i+j}(\mathbb{X})$



THEN:

 $\mathbf{Y}(\mathbb{X}) = \bigoplus_{i=1}^{k} \mathbf{N}_{i}(\mathbb{X})$

The Smallest Unate Function

When $Y_{i-1}(X)$ is represented as sum of minterms:

$$Y_{i-1}(\mathbb{X}) = \bigcup_{i} \mathbb{M}_{i-1}^{(i)}(\mathbb{X}),$$

then

$$N_i(\mathbb{X}) = \bigcup_j \mathbb{M}_{i-1}^{(i)}(\mathbb{X}) + \bigcup_j \mathbb{C}_{j-1}^{(j)}(\mathbb{X}),$$

where $\mathbb{C}_{j-1}^{(j)}(\mathbb{X})$ is a cofactor of $\mathbb{M}_{i-1}^{(i)}(\mathbb{X})$. When simplified to SOP form, we get $N_i(\mathbb{X}) = \bigcup_k I_{i-1}^{(k)}$, where $I_{i-1}^{(k)}$ are positive unate function, therefore $N_i(\mathbb{X})$ is also a positive unate function.

Corollary To obtain $N_i(\mathbb{X})$ implied by $Y_{(i-1)}(\mathbb{X})$ it is enough to remove complemented variables from $Y_{(i-1)}(\mathbb{X})$ represented in SOP form.

Key Observation

 $Y_0(\mathbb{X})$ in sum of products (SOP) form repeat until $Y_i(\mathbb{X}) = 0$ - obtain smallest unate $N_i(\mathbb{X})$ implied by $Y_{i-1}(\mathbb{X})$ - $Y_i(\mathbb{X}) = Y_{i-1}(\mathbb{X}) \oplus N_i(\mathbb{X})$ $Y_0(\mathbb{X}) = N_1(\mathbb{X}) \oplus N_2(\mathbb{X}) \oplus \ldots \oplus N_n(\mathbb{X})$

where: $N_i(\mathbb{X})N_{i+j}(\mathbb{X}) = N_{i+j}(\mathbb{X})$

Proposed Synthesis Algorithm

Require: *n*-variable Boolean function $Y(\mathbb{X})$ **Ensure:** NDR_{*l*} vs. NDR_{*d*} relation, and $N_i(\mathbb{X})$ functions

- 1: **if** $Y(0^n) = 0$ **then**
- 2: $NDR_l > NDR_d$,
- 3: **else**
- 4: $NDR_l < NDR_d$,
- 5: $Y(\mathbb{X}) = 1 \oplus Y(\mathbb{X})$,
- 6: **end if**
- 7: set i = 1,
- 8: find the smallest unate function $N_i(\mathbb{X})$ implied by $Y(\mathbb{X})$,
- 9: if $Y(\mathbb{X}) = N_i(\mathbb{X})$ then exit algorithm
- 10: calculate $Y_i(\mathbb{X})$ such that $Y(\mathbb{X}) = N_i(\mathbb{X}) \oplus Y_i(\mathbb{X})$,
- 11: while $Y_i(\mathbb{X}) \neq 0$ do
- 12: find the smallest unate function $N_{i+1}(\mathbb{X})$ implied by $Y_i(\mathbb{X})$,
- 13: calculate $Y_{i+1}(\mathbb{X})$ such that $Y_i(\mathbb{X}) = N_{i+1}(\mathbb{X}) \oplus Y_{i+1}(\mathbb{X})$,
- 14: set i = i + 1,

15: end while

Proposed Synthesis Algorithm

Require: *n*-variable Boolean function $Y(\mathbb{X})$ **Ensure:** NDR_{*l*} vs. NDR_{*d*} relation, and $N_i(\mathbb{X})$ functions

- 1: if $Y(0^n) = 0$ then
- 2: $NDR_l > NDR_d$,
- 3: **else**
- 4: $NDR_l < NDR_d$,
- 5: $Y(\mathbb{X}) = 1 \oplus Y(\mathbb{X})$,
- 6: end if
 - 7: set i = 1,
 - 8: find the smallest unate function $N_i(\mathbb{X})$ implied by $Y(\mathbb{X})$,
 - 9: **if** $Y(\mathbb{X}) = N_i(\mathbb{X})$ **then** exit algorithm
- 10: calculate $Y_i(\mathbb{X})$ such that $Y(\mathbb{X}) = N_i(\mathbb{X}) \oplus Y_i(\mathbb{X})$,
- 11: while $Y_i(\mathbb{X}) \neq 0$ do
- 12: find the smallest unate function $N_{i+1}(\mathbb{X})$ implied by $Y_i(\mathbb{X})$,
- 13: calculate $Y_{i+1}(\mathbb{X})$ such that $Y_i(\mathbb{X}) = N_{i+1}(\mathbb{X}) \oplus Y_{i+1}(\mathbb{X})$,
- 14: set i = i + 1,

15: end while

Proposed Synthesis Algorithm

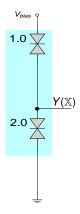
Require: *n*-variable Boolean function $Y(\mathbb{X})$ **Ensure:** NDR_{*l*} vs. NDR_{*d*} relation, and $N_i(\mathbb{X})$ functions

- 1: if $Y(0^n) = 0$ then
- 2: $NDR_l > NDR_d$,
- 3: **else**
- 4: $NDR_l < NDR_d$,
- 5: $Y(\mathbb{X}) = 1 \oplus Y(\mathbb{X})$,
- 6: end if
- 7: set *i* = 1,
- 8: find the smallest unate function $N_i(\mathbb{X})$ implied by $Y(\mathbb{X})$,
- 9: if $Y(\mathbb{X}) = N_i(\mathbb{X})$ then exit algorithm
- 10: calculate $Y_i(\mathbb{X})$ such that $Y(\mathbb{X}) = N_i(\mathbb{X}) \oplus Y_i(\mathbb{X})$,
 - 11: while $Y_i(\mathbb{X}) \neq 0$ do
 - 12: find the smallest unate function $N_{i+1}(\mathbb{X})$ implied by $Y_i(\mathbb{X})$,
 - 13: calculate $Y_{i+1}(\mathbb{X})$ such that $Y_i(\mathbb{X}) = N_{i+1}(\mathbb{X}) \oplus Y_{i+1}(\mathbb{X})$,
 - 14: set i = i + 1,
 - 15: end while

How It Works for: $Y(\mathbb{X}^3) = x_1 \overline{x_2} + x_2 x_3$ step 1: for $Y(0^3)$ setup NDR_d and NDR_l relation

• $Y(0^3) = 0 \Rightarrow NDR_d > NDR_l$

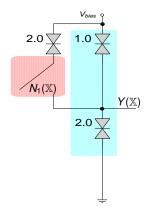
- $N_1(\mathbb{X}^3) = x_1 + x_2 x_3$ $Y_1(\mathbb{X}^3) = N_1(\mathbb{X}^3) \oplus Y(\mathbb{X}^3) = x_1 x_2 \overline{x_3}$
- $N_2(\mathbb{X}^3) = x_1 x_2$ $Y_2(\mathbb{X}^3) = N_2(\mathbb{X}^3) \oplus Y_1(\mathbb{X}^3) = x_1 x_2 x_3$
- $N_3(\mathbb{X}^3) = x_1 x_2 x_3$ $Y_3(\mathbb{X}^3) = N_3(\mathbb{X}^3) \oplus Y_2(\mathbb{X}^3) = 0$



How It Works for: $Y(\mathbb{X}^3) = x_1 \overline{x_2} + x_2 x_3$

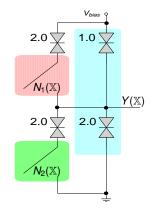
step 2: calculate smallest unate function $N_1(\mathbb{X}^3)$ implied by $Y(\mathbb{X}^3)$

- $Y(0^3) = 0 \Rightarrow NDR_d > NDR_l$
- $N_1(\mathbb{X}^3) = x_1 + x_2 x_3$ $Y_1(\mathbb{X}^3) = N_1(\mathbb{X}^3) \oplus Y(\mathbb{X}^3) = x_1 x_2 \overline{x_3}$
- $N_2(\mathbb{X}^3) = x_1 x_2$ $Y_2(\mathbb{X}^3) = N_2(\mathbb{X}^3) \oplus Y_1(\mathbb{X}^3) = x_1 x_2 x_3$
- $N_3(\mathbb{X}^3) = x_1 x_2 x_3$ $Y_3(\mathbb{X}^3) = N_3(\mathbb{X}^3) \oplus Y_2(\mathbb{X}^3) = 0$

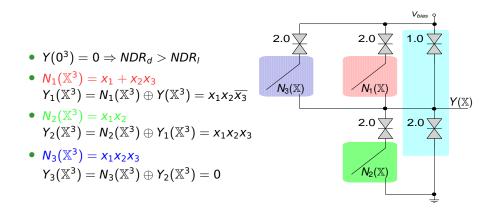


How It Works for: $Y(\mathbb{X}^3) = x_1 \overline{x_2} + x_2 x_3$ repeat step 2: calculate smallest unate function $N_2(\mathbb{X}^3)$ implied by $Y_1(\mathbb{X}^3)$

- $Y(0^3) = 0 \Rightarrow NDR_d > NDR_l$
- $N_1(\mathbb{X}^3) = x_1 + x_2 x_3$ $Y_1(\mathbb{X}^3) = N_1(\mathbb{X}^3) \oplus Y(\mathbb{X}^3) = x_1 x_2 \overline{x_3}$
- $N_2(\mathbb{X}^3) = x_1 x_2$ $Y_2(\mathbb{X}^3) = N_2(\mathbb{X}^3) \oplus Y_1(\mathbb{X}^3) = x_1 x_2 x_3$
- $N_3(\mathbb{X}^3) = x_1 x_2 x_3$ $Y_3(\mathbb{X}^3) = N_3(\mathbb{X}^3) \oplus Y_2(\mathbb{X}^3) = 0$

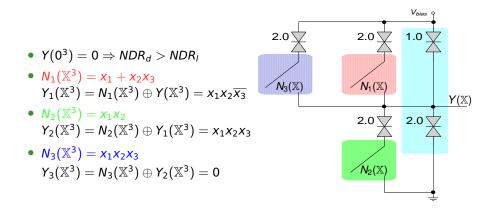


How It Works for: $Y(\mathbb{X}^3) = x_1 \overline{x_2} + x_2 x_3$ repeat step 2: calculate smallest unate function $N_3(\mathbb{X}^3)$ implied by $Y_2(\mathbb{X}^3)$



How It Works for: $Y(\mathbb{X}^3) = x_1\overline{x_2} + x_2x_3$

max *n* iteration needed



$$Y(\mathbb{X}^3) = N_1(\mathbb{X}^3) \oplus N_2(\mathbb{X}^3) \oplus N_3(\mathbb{X}^3)$$

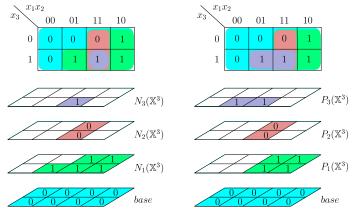
Algorithm Properties

- at most n iteration needed
- at most *n* + 2 branches needed
- no need to use complementary transistors pair
- input function in SOP form
- output set of SOP switching functions

	[2]	[4]	Our
Theoretical no. of branches in GTG circuit	≤ 2 ^{<i>n</i>}	$\leq n + 2$	$\leq n + 2$
Synthesis algorithm	no	yes	yes
Input function form	N/A	Reed-Muller	SOP
No. of branches in synthesized circuit	N/A	$\leq 2^n$ ($\leq n+2$ on average)	$\leq n + 2$
No. of iterations in algorithm's main loop	N/A	O(2 ⁿ)	<i>O</i> (<i>n</i>)

Possible Improvement

- assumption N_i(X)N_{i+j}(X) = N_{i+j}(X) restricts number of possible solutions
- when released other solutions exist



different number of switching elements - 8 vs. 5

- GTG switching functions can be synthesized directly from SOP form
- there are at most n + 2 branches in the circuit
- algorithm gives the best known solution in terms of number of branches
- further improvements are possible

The 15th Asia and South Pacific Design Automation Conference January 21, 2010

Generalised Threshold Gate Synthesis based on AND/OR/NOT Representation of Boolean Function

Marek A. Bawiec (speaker), Maciej Nikodem Wrocław University of Technology