Energy Efficient Joint Scheduling and Multi-Core Interconnect Design

Cathy Xu, Chun Jason Xue, Yi He, Edwin Sha

January, 2010 ASPDAC 2010, Taipei

Outline

- Introduction
 - Interconnect with segmented buses
 - Switch design
 - Energy estimation model
- Motivation Example
- Application Specific Interconnect Design and Scheduling with Segmented Buses
- Experimental Results
- Conclusion

Introduction

Objectives:

- To analyze the interconnect energy consumption impacting factors.
- To determine the minimum number of segmented buses required and related switch configurations.
- To propose a computation and communication coscheduling algorithm to minimize the interconnect energy consumption.

Interconnect with Segmented Buses Architecture

- Heterogeneity of processors can mean two things:
 - All processors of the system have the same functional capability, but they perform the same task at different speeds.
 - The processors have different functional capabilities: that is, certain tasks can only performed by certain processors.
- Our research addresses the processor heterogeneity of the first type.
- Definition: A target parallel system M_{heter} = (P, w) consists of a set of processors P_i, whose heterogeneity, in terms of processing speed is described by the execution time function w. The processors are connected by a communication network.

Switch Diagram and Connectivity

ASPDAC2010, Taipei

Estimation Model on Interconnect Energy Consumption

- **Energy consumption** E_{all} = E_{dynamic} + E_{static}
- $E_{dynamic} = Dis^* P_{seg}$ where $Dis = \sum {}^{N}Seg_i$ P_{seg} is the unit dynamic power required to transfer one data over one seğinent
- $E_{static} = a^*b(M-1)L_{sch}Pseg$ where a is a chosen factor related to VLSI process
- The energy consumption factors:
 - **N** number of data transfers **b** number of buses
- - **Dis** the total segment span
 - Lsch schedule length

Modeling Application with Inter Iteration Data Dependencies

V: set of the computation nodes (instructions)

E: set of edges that define data dependency relations

t: given computation time of node based on the underlying hardware resource

d(e): non-negative delays for an edge

To solve y''+3xy'+3y = 0

Original Schedule

ASPDAC2010, Taipei

Original Schedule's Data Transfer Diagram

ASPDAC2010, Taipei

Original Schedule's Data Transfer Diagram

Data Transfer Diagram after Rotation 1

ASPDAC2010, Taipei

Data Transfer Diagram after Rotation 2 Control step Core 1 Core 2 Core 3 2,7 2,7 Core 4 Core 5 Minimum of **1** segmented buses

Summary on the Example DFG

	Ν	Dis	b	Lsch	Edynamic	Estatic
Original Schedule	7	15	1.25	7	15Pseg	35aPseg
Rotation Step 1	7	14	1.25	6	14Pseg	30aPseg
Rotation Step 2	5	11	1	6	11Pseg	8aPseg
Improvement %	28.5	26.7	25	14.3	26.7	17.1

Modeling Data Transfers over Segmented Buses

Set of X*i*,*j*,*k* variables are used to represent the data transfer.

- X*i,j,k* means the *i*th data transfer at control step *k* over segment *j*.
- If transfer occurs at control step k over segment j, then X*i*,*j*,*k* = 1. Otherwise, X*i*,*j*,*k* = 0.
- Constraints:
 - 1. Data transfer over one segment takes one control step.
 - 2. Data transfer has to travel through all segments from start to end in sequential order.
 - 3. Maximum concurrent data transfers at any single control step over any one segment is subject to the bandwidth requirement.
 - 4. Concurrent data transfers are allowed on non-overlapping segment at any control step.

Related Constraints

• Constraints:

- Data transfer over one segment takes one control step. For each i, 1< i \leq N; each j, 1< j \leq J, $\sum_{k} x_{iik} = 1$
- Data transfer has to travel through all segments from start to end in sequential order.
- For each i, 1< i \leq N; each j, 1< j \leq J, 1<k \leq K, x_{ijk} + \sum_{i} ^{(j+1) \leq I \leq J \sum_{m} 0 \leq m \leq (k-1)x_{ilm} \leq 2}
- Maximum concurrent data transfers at any single control step over any one segment is subject to the bandwidth requirement.

For each k, 1<k \leq K, each j, 1< j \leq J, $\Sigma_i x_{ijk} \leq b_j$

 Concurrent data transfers are allowed on non-overlapping segment at any control step.

For each k, 1<k \leq K, each j, $\sum_{\text{distinct i}} x_{ijk} + x_{i(j+1)k} \leq b_j$

Valid Data Transfers Scenarios

8

Xi,1,7=**0**

Xi,2,7=**0**

7

k=7

6

7

8

Xi,1,7=**1**

Xi,2,7=**1**

Invalid Data Transfers Scenarios

7

k=7

6

←

7

8

Xi,1,7=**1**

Xi,2,7=**0**

Steps on Interconnect Communication Scheduling (ICScheduling) Algorithm

- Derive Data Transfer Diagram (DTD) on given schedule input
- Define vector X^T = (...x_{ijk}, ..., x_{NJK}) where N is the total number of transfers and K is the number of segments, L is the schedule length.
- Define vector S^T = (s₁, ..., s_j, ..., s_n) where s_j is non negative integer
- Define vector V^T=(1,...,1, b,...,b). There are N 1s and K bs in the vector.
- Construct matrix C based on the properties of the DTS
 - Data transfer over one segment takes one control step.
 For each i, 1< i ≤N; each j, 1< j ≤J, ∑_k x_{iik} = 1
 - Data transfer has to travel through all segments from start to end in sequential order.

For each i, 1< i \leq N; each j, 1< j \leq J, 1<k \leq K, x_{ijk} + Σ_1 ^{(j+1) \leq I \leq J Σ_m ^{0 \leq m \leq (k-1) x_{ilm} \leq 2}}

• Maximum concurrent data transfers at any single control step over any one segment is subject to the bandwidth requirement.

For each k, 1<k \leq K, each j, 1< j \leq J, $\Sigma_i x_{ijk} \leq b_i$

 Concurrent data transfers are allowed on non-overlapping segment at any control step.

For each k, 1<k \leq K, each j, $\sum_{\text{distinct i}} x_{ijk} + x_{i(j+1)} k \leq b_j$

- Construct matrix C
- Solving CY = V for X

Switch Configurations

Interconnect Energy Minimization Scheduling (IEMS) Algorithm

Input: DFG G(V,E,t,d), CLU, lc **Output:** *bmin*, *DSmin*, *CSmin*, *Emin* $CS \leftarrow$ Initial Schedule(G,CLU): $CSmin \leftarrow CS$: $(bmin, DSmin) \leftarrow ICScheduling(CS);$ *Emin* ← Caculate_Energy(*bmin*, DSmin, CSmin); for each *i*, $0 < i \leq 2|V|$ do CS ← CSRStep(CS, *lc*): (b, DS) ← ICScheduling (CS); *E*← Caculate_Energy(*b*, *DS*, **CS**); if E < Emin then $bmin \leftarrow b$; $DSmin \leftarrow DS$; Smin $\leftarrow S$; Emin $\leftarrow E$; end if end for return bmin, DTmin, Smin, Emin;

•CSRStep is a function to perform the rotation on rotatable nodes at each control step •A node is rotatable if it doesn't have any input edges or all input edges have non-negative delays. •Bipartite matching for reassigning the rotatable nodes •Bipartite weight $W(v, seati) = \sum_{w in V}$ e_{v.w}|Core(w) – Core(seati)| •Calculate_Energy is a function based on the interconnect energy estimation model

Experimental Data

Apps	Ν	Lsch	Dis1	Dis2	b1	b2	R _{Ed}	R _{Es}
liR	4	4	4	9	2	2	0.55	0
IIR uf2	7	4	15	30	4	4	0.5	0
llR uf3	12	5	41	81	6	6	0.49	0
IIR uf4	14	7	29	78	4	5	0.62	0.2
Volterra	11	12	9	63	1	5	0.85	0.8
Volterra uf2	21	12	23	170	2	13	0.86	0.84
C-schwa	7	9	7	28	1	7	0.75	0.85
C-schwa uf2	15	9	27	120	2	12	0.77	0.83
4 Lattice	13	9	25	96	3	11	0.73	0.72
All-pole	5	13	1	5	1	1	0.8	0
All-pole uf2	14	18	5	23	2	4	0.78	0.5
All-pole uf3	21	24	5	40	2	3	0.87	0.3
Average							0.71	0.23

Conclusion

- Interconnect network has become the performance bottleneck and it represents a considerable amount of the total area and energy consumption
- Scheduler gets more challenge as it has to take the inter-processor communication into account
- This paper focuses on developing models, methodologies and algorithms on interconnect with
 - Segmented buses
 - Determine the minimum number of segmented buses and the switch configurations.
 - Scheduling to minimize the interconnect energy consumption.

Any Question?

Backup Slides

7

k=7

6

7

8

Xi,1,7=1

Xi,2,7=**1**

7 8 k=6 k=7 6 6 Xi,1,7=1 Xi,1,6=1 Xi,2,6=**0 X**i,2,7=**0 X**i,3,7=**1 X**i,3,6=**0** <7

(m)

(0)

7 8 k=6 k=7 6 Xi,1,7=**0** Xi,1,6**=0** Xi,2,7=**1** Xi,2,6=1 **X**i,3,7=**1 X**i,3,6=**0** 7

(q)

(u)