
Trace-based Performance Analysis Framework
for Heterogeneous Multicore Systems

Shih-Hao Hung, Chia-Heng Tu, Thean-Siew Soon

Performance, Applications and Security (PAS) Lab
CSIE & GINM, National Taiwan University

Outlines

• Motivation

• Designs of the ParallelTracer

• Experimental Results and
Evaluation

• Summary

2

Motivation (1/2)
The complexity of Today’s computer systems
have increased with the advent of embedded
heterogeneous multicore systems
A good application developer has to be familiar
with the heterogeneity

Architecture
Multiple Instruction Set Architectures (ISAs)
Communication schemes on the platform

Application
Partitioning of computation and load balance
Communication patterns of the application

3

DataTasks

Motivation (2/2)

Performance analysis tools are essential in
exploring the multicore architecture’s potential

Tracing tools can reveal detailed machine-application
interactions
Most tracing tools are designed for homogeneous
multicore systems and platform-dependent

Our goals:
Develop a portable toolkit for embedded
heterogeneous multicore platform
Ported our toolkit to a heterogeneous multicore
system, IBM Cell, as a case study to demonstrate the
efficiency of our toolkit, ParallelTracer

4

Outlines

• Motivation

• Designs of the ParallelTracer

• Experimental Results and
Evaluation

• Summary

5

ParallelTracer Overview

6

Source
program

Instrumented
code

Trace
API

Performance
Analysis

Performance
Visualization

Executable

Trace

Instrumentation
tool

Trace Collecting
Handler Library

Trace
Converter

Architecture
dependent

Native
compiler

Pre-processing

Runtime trace
collecting

Post-processing

Pre-Processing

• Injects probes at the source level
– Capable of tracing events specified by the user
– By default, it is pre-programmed to identify:

• Program flow (function entry and exit)
• Communication events (DMA, send, recv, put, get, …)

• Heavy instrumentation can interfere with normal program
execution!
– Need to minimize trace collection overhead

7

Source
program

Instrumented
code

Instrumentation
tool

Native
compiler

Pre-processing

Screenshots of Original Source Code vs.
Instrumented Code

8

int main (unsigned long long speid,unsigned long long
argp,unsigned long long envp)
{

…………
/* Get job from Master thread (PPE) */
mfc_get(&mystruct,(unsigned int) argp,128,tag,0,0);

/* Wait until data received */
mfc_read_tag_status_all();

/* Do the computation */
……………

/* Return data to Master thread (PPE) */
mfc_put(Z,(unsigned long int) mystruct.Z+offset,128,tag,0,0);

/* Wait until all data has been sent */
mfc_read_tag_status_all();

return 0;
} // Example code at Data Processor side (SPE)

int main (unsigned long long speid,unsigned long long
argp,unsigned long long envp)
{

SPUTraceInit();
…………

/* Get job from Master thread (PPE) */
mfc_get(&mystruct,(unsigned int) argp,128,tag,0,0);
DMAStart(tag, DMA_GET, 128);
/* Wait until data received */

mfc_read_tag_status_all();
DMAEnd();

/* Do the computation */
……………

/* Return data to Master thread (PPE) */
mfc_put(Z,(unsigned long int) mystruct.Z+offset,128,tag,0,0);
DMAStart(tag, DMA_PUT, 28);
/* Wait until all data has been sent */
mfc_read_tag_status_all();
DMAEnd();

SPUTraceTerminate();
return 0;

}

The monitoring codes are inserted into the source code right
before/after the interested communication functions, i.e., DMA

Runtime Trace Collection

Trace collection
Handlers collect events at PPE and SPE sides
SPE traces are stored in local stores initially
Traces moved to main memory and later saved to
disk

Optimization for trace collection
Buffering and threading schemes

9

Executable

Trace

Trace Collecting
Handler Library

Architecture
dependent

Runtime trace
collecting

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

PPE
L1

L2
EIB

Memory

I/O
Controller

MIC

Flex I/O

Post-Processing

• Trace API
– Unified interface to access trace data

• Trace converter
– Converting the trace data format

• Visualization tool
– Communication graph
– Timeline diagram

10

Trace
API

Performance
Analysis

Performance
Visualization

Trace

Trace
converterPost-processing

Outlines

• Motivation

• Designs of the ParallelTracer

• Experimental Results and
Evaluation

• Summary

11

Experimental Setup

• IBM BladeCenter QS21*
– Cell processor chip x 2

• Clock rate: 3.2GHz
• Number of cores: 2 PPE + 16 SPEs
• Main memory: 2GB

– RedHat Enterprise Linux 5.1
• Linux Kernel 2.6.18
• GCC compiler 4.1.1
• Cell SDK 3.0

12
*IBM bladecenter qs21. http://www-03.ibm.com/systems/bladecenter/hardware/servers/qs21/

Case Study:
A Data Parallel Application

• RC5 (block cipher) is used to
capture the behaviors of a
data parallel application
– 1 master thread (PPE)

– 4 worker threads (SPEs)

– Data size
• 4MB of int type data (16MB)

13

PPE

SPE

PPE

fork

join

SPE SPE SPE

encryp
tio

n

data

results

SPE

PPE

fork

join

SPE SPE SPE

d
ecryp

tio
n

data

results

RC5 – Timeline Diagram

14

RC5 – Communication Graph

15

PPE

SPE

PPE

fork

join

SPE SPE SPE

SPE

PPE

fork

join

SPE SPE SPE

Indicates DMA PUT operations

Each SPE gets 4MB data from PPE throughout
the application execution

Capturing communication patterns

Source and destination

Communication schemes (e.g., DMA)

Performance Overhead

• Overhead of trace collection
– Without optimization: 37.71%

– Double buffering and asynchronous I/O: 10.01%

16

0%

10%

20%

30%

40%

50%

2KB 4KB 8KB 16KB 2KB 4KB 8KB 16KB 2KB 4KB 8KB 16KB

Data Size = 2MB Data Size = 4MB Data Size = 8MB

La
te

nc
y

(%
)

N-PPE Threads

Trace Gathering
and
Asynchronous
I/O

Without opt.

Double buffering and
asynchronous I/O

Outlines

• Motivation

• Designs of the ParallelTracer

• Experimental Results and
Evaluation

• Summary

17

Summary

• We developed a portable tracing toolkit for
embedded heterogeneous multicore
platforms
– Support tracing capabilities of recording:
– Communication and computation events
– User specific events

• Our experiment results on Cell show that our
tracing tool generates low overhead
– Average ~10% performance overhead

18

THANKS FOR YOUR ATTENTION!

