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Motivation (1/2)
The complexity of Today’s computer systems 
have increased with the advent of embedded 
heterogeneous multicore systems 
A good application developer has to be familiar 
with the heterogeneity

Architecture
Multiple Instruction Set Architectures (ISAs)
Communication schemes on the platform

Application
Partitioning of computation and load balance
Communication patterns of the application

3

DataTasks



Motivation (2/2)

Performance analysis tools are essential in 
exploring the multicore architecture’s potential

Tracing tools can reveal detailed machine-application 
interactions
Most tracing tools are designed for homogeneous 
multicore systems and platform-dependent

Our goals:
Develop a portable toolkit for embedded 
heterogeneous multicore platform
Ported our toolkit to a heterogeneous multicore 
system, IBM Cell, as a case study to demonstrate the 
efficiency of our toolkit, ParallelTracer
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ParallelTracer Overview
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Pre-Processing

• Injects probes at the source level 
– Capable of tracing events specified by the user
– By default, it is pre-programmed to identify:

• Program flow (function entry and exit)
• Communication events (DMA, send, recv, put, get, …)

• Heavy instrumentation can interfere with normal program 
execution!
– Need to minimize trace collection overhead
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Screenshots of Original Source Code vs. 
Instrumented Code
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int main (unsigned long long speid,unsigned long long
argp,unsigned long long envp) 
{

…………        
/* Get job from Master thread (PPE) */
mfc_get(&mystruct,(unsigned int) argp,128,tag,0,0);

/* Wait until  data  received */
mfc_read_tag_status_all();

/* Do the computation */
……………

/*  Return data to Master thread (PPE) */
mfc_put(Z,(unsigned long int) mystruct.Z+offset,128,tag,0,0);

/* Wait until  all data has been sent */
mfc_read_tag_status_all();

return 0;
}  // Example code at Data Processor side (SPE)

int main (unsigned long long speid,unsigned long long 
argp,unsigned long long envp) 
{

SPUTraceInit();
…………        

/* Get job from Master thread (PPE) */
mfc_get(&mystruct,(unsigned int) argp,128,tag,0,0);
DMAStart(tag, DMA_GET, 128);
/* Wait until data received */

mfc_read_tag_status_all();
DMAEnd();

/* Do the computation */
……………

/*  Return data to Master thread (PPE) */
mfc_put(Z,(unsigned long int) mystruct.Z+offset,128,tag,0,0);
DMAStart(tag, DMA_PUT, 28);
/* Wait until  all data has been sent */
mfc_read_tag_status_all();
DMAEnd();

SPUTraceTerminate();
return 0;

} 

The monitoring codes are inserted into the source code right 
before/after the interested communication functions, i.e., DMA



Runtime Trace Collection

Trace collection
Handlers collect events at PPE and SPE sides
SPE traces are stored in local stores initially
Traces moved to main memory and later saved to 
disk

Optimization for trace collection
Buffering and threading schemes
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Post-Processing

• Trace API
– Unified interface to access trace data

• Trace converter
– Converting the trace data format

• Visualization tool
– Communication graph
– Timeline diagram
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Experimental Setup

• IBM BladeCenter QS21*
– Cell processor chip x 2

• Clock rate: 3.2GHz
• Number of cores: 2 PPE + 16 SPEs
• Main memory: 2GB

– RedHat Enterprise Linux 5.1
• Linux Kernel 2.6.18
• GCC compiler 4.1.1
• Cell SDK 3.0
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Case Study: 
A Data Parallel Application

• RC5 (block cipher) is used to 
capture the behaviors of a 
data parallel application
– 1 master thread (PPE) 

– 4 worker threads (SPEs)

– Data size
• 4MB of int type data (16MB)
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RC5 – Timeline Diagram
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RC5 – Communication Graph
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Performance Overhead

• Overhead of trace collection
– Without optimization: 37.71%

– Double buffering and asynchronous I/O: 10.01%
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Summary

• We developed a portable tracing toolkit for 
embedded heterogeneous multicore 
platforms
– Support tracing capabilities of recording:
– Communication and computation events
– User specific events

• Our experiment results on Cell show that our 
tracing tool generates low overhead 
– Average ~10% performance overhead
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