iRetILP : An efficient incremental algorithm for min-period retiming under general delay model

Debasish Das^{*}, Jia Wang[†] and Hai Zhou EECS, Northwestern University, Evanston, IL 60201 *Place and Route Group, Mentor Graphics, San Jose, CA 95131 [†]ECE, Illinois Institute of Technology, Chicago, IL 60616

January 19, 2010

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

Simple Delay Model

Constant combinational delays are considered

- General Delay Model (Similar to Lalgudi et al.) considers 4 physical effects
 - Clock skews
 - Load dependent FF setup times
 - Combinational gate delays
 - Interconnect delays

- Simple Delay Model
 - Constant combinational delays are considered
- General Delay Model (Similar to Lalgudi et al.) considers 4 physical effects
 - Clock skews
 - Load dependent FF setup times
 - Combinational gate delays
 - Interconnect delays

Retiming

Relocate flip-flops (FFs) w/o changing circuit functionality. [Leiserson and Saxe 83]

- Retiming under simple constant delay model
 - Polynomial time algorithm proposed by Leiserson et al.
 - An Efficient implementation proposed by Shenoy et al.
 - Algorithm considering hold conditions proposed by Papaethymiou et al.
 - Incremental algorithm proposed by Zhou et al., Lin et al.
- Retiming under general delay model
 - Branch and Bound Algorithm proposed by Soyata et al.
 - Integer linear programming based algorithm proposed by Lalgudi et al.

Retiming

- Relocate flip-flops (FFs) w/o changing circuit functionality. [Leiserson and Saxe 83]
- Retiming under simple constant delay model
 - Polynomial time algorithm proposed by Leiserson et al.
 - An Efficient implementation proposed by Shenoy et al.
 - Algorithm considering hold conditions proposed by Papaethymiou et al.
 - Incremental algorithm proposed by Zhou et al., Lin et al.
- Retiming under general delay model
 - Branch and Bound Algorithm proposed by Soyata et al.
 - Integer linear programming based algorithm proposed by Lalgudi et al.

Retiming

- Relocate flip-flops (FFs) w/o changing circuit functionality. [Leiserson and Saxe 83]
- Retiming under simple constant delay model
 - Polynomial time algorithm proposed by Leiserson et al.
 - An Efficient implementation proposed by Shenoy et al.
 - Algorithm considering hold conditions proposed by Papaethymiou et al.
 - Incremental algorithm proposed by Zhou et al., Lin et al.
- Retiming under general delay model
 - Branch and Bound Algorithm proposed by Soyata et al.
 - Integer linear programming based algorithm proposed by Lalgudi et al.

Circuit classification

General delay model classifies the circuit into two categories

Begin/end extendible circuit

Property (Path Delay Monotonicity)

Delay of a register-to-register path decreases as the number of combinational elements on the path is decreased.

- Efficiently solved by extension of algorithm proposed by Shenoy et al.
- Efficiently solved by extension of incremental algorithm proposed by Zhou et al.
- Two-way extendible circuit
 - Can be solved by ILP based algorithm proposed by Lalgudi et al.
 - Inefficient in terms of performance and memory
 - Motivated us to develop iRetILP

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

Sequential System Optimization using Retiming

- Why General Delay Model ?
 - Considers prominent physical effects
 - More important for lower process nodes
- Min-period retiming:
 - Relocate FFs to minimize clock period.
 - Ignore cost can increase FF area.
 - Lalgudi et al's algorithm solved min-period retiming.
- Min-area retiming:
 - ▶ Relocate FFs to minimize FF are under given clock period.
- Why study Min-period retiming ?
 - Min-area retiming needs a clock period.
 - Min-period retiming drives Min-area retiming.
- This paper focusses on Min-period retiming

Circuit Graph Generation

Circuit graph G = (V, E) of *n* vertices and *m* edges

- Each vertex $v \in V$ can be
 - primary input/output port
 - input/output port of combinational cell
- Each edge $e \in V$ can be
 - Combinational edge c with 2 labels
 - $\delta(c)$: Minimum load dependent gate delay
 - Δ(c) : Maximum load dependent gate delay
 - Interconnect edge i with 4 labels
 - d(i) : Interconnect delay without FF
 - α(i) : Interconnect delay driving FF input port
 - $\beta(i)$: Interconnect delay driven by FF output port
 - w(i) : Number of FFs on interconnect

Circuit Extension for concise treatment of timing constraints

- Two vertices added : H-IN and H-OUT
- 0 delay edges added from
 - Primary outputs to H-IN
 - H-OUT to Primary inputs
 - H-IN to H-OUT

One Virtual FF added on H-IN to H-OUT edge

Example of Extended Circuit Graph

Following figure shows the extended circuit graph

Retiming Feasibility Constraints

Retiming is represented by an integer-valued vertex label

 $r: V \to \mathbb{Z}$

r(v) is the # FFs moved from fanout interconnect edges to fanin interconnect edges of the ports of gate v

Number of FFs on edge (i,j) is computed as

$$w_r(i,j) \stackrel{\Delta}{=} w(i,j) + r(j) - r(i)$$

Retiming feasibility constraints

$$\begin{aligned} & P0(r): w_r(i,j) \geq 0, \forall (i,j) \in E \\ & w_r(i,j) = 0, \forall (i,j) \in C, w_r(\text{H-OUT}, \text{H-IN}) = 1 \end{aligned}$$

Timing Constraints in Retiming

- For ease of presentation we focus on setup constraints
- ▶ Use label $T : V \to \mathcal{R}^+$ to denote latest arrival time at each vertex
- Clock period of the circuit is ϕ
- Following inequalities model the timing constraints

 $P1(r, \phi) : \exists T \text{ such that:}$ $T(i) + \Delta(i,j) \leq T(j), \forall (i,j) \in C$ $T(i) + d(i,j) \leq T(j), \forall (i,j) \in I \land w_r(i,j) = 0$ $T(i) + \alpha(i,j) \leq \phi \land T(j) \leq \beta(i,j), \forall (i,j) \in I \land w_r(i,j) \geq 1$

Theorem

The clock period of the circuit G after retiming r is given by

 $\phi(r) = \max\{T(i) + \alpha(i,j) : \forall (i,j) \in I \land w_r(i,j) \ge 1\}.$

Given an assignment of w_r on each edge, TA provides 3 procedures

- get-period :
 - Computes critical path $e \rightsquigarrow e'$
 - Returns ϕ as delay of critical path
- get-head-edge : returns e'
- get-tail-edge : returns e

Theorem

Given a graph G of n vertices and m edges, the algorithm TA runs in O(m + n) time.

We formulate the following Setup Retiming problem

Problem (Generalized Setup Retiming)

Given a circuit G = (V, E) and the number of FFs w on the edges, find a retiming r such that the retiming validity constraints P0(r) and timing feasibility constraints $P1(r, \phi)$ can be satisfied with the minimum clock period ϕ .

Polynomial Retiming Algorithm : Step 1

Polynomial Retiming Algorithm : Step 2

Polynomial Retiming Algorithm : Step 3

Sub-optimality of Polynomial Retiming Algorithm

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

Traditional Algorithm Preprocessing

We call the algorithm proposed by Lalgudi et al. as Retime-General

- Extension of Leisserson and Saxe's Algorithm.
- \blacktriangleright Two matrices : W (size n \times n) and D (size m \times m) used
- W[u][v] indicates minimum register count among all paths between vertices u and v

$$W(u,v) = min\{w(p) : u \rightsquigarrow_p v\}$$

► Given pair of edges e = (û, u), ê = (v, v), D(e,ê) is computed as

$$D(e, \hat{e}) = max\{\Omega(e, p, \hat{e}) : \hat{u} \to_e u \rightsquigarrow_p v \to_{\hat{e}} \hat{v}, \\ w(p) = W(u, v)\}$$

 Ω is longest propagation delay from e to ê under minimum register count constraint

Matrix D stores all possible clock periods

Clock Period Feasibility Theorem

- Matrix D and W is a preprocessing stage for Retime-General
- Given graph G, G_r is obtained using retiming transformation r
- For period c, conditions that satisfy setup constraints in G_r

Theorem (ILP Constraint)

Let G_r be a graph with retiming transformation $r : V \to Z$ and c be a positive real number. c is a feasible clock period for G_r if and only if for every edge $u \to_e v \in I$, we have

$$w_r(e) \geq 0$$

and for every edge pair e, $\hat{e} \in I$ such that $\hat{u} \rightarrow_e u \rightsquigarrow v \rightarrow_{\hat{e}} \hat{v}$ and $D(e,\hat{e}) > c$, we have

$$W_r(u,v) = 0 \Rightarrow (w_r(e) = 0 \lor w_r(\hat{e}) = 0)$$

- 1. Generate a clock period bound ϕ_{ub} using TA
- 2. Linear search to generate period $c < \phi_{ub}$
- 3. Feasibility of c is checked using ILP Constraint Theorem
- 4. Clock period updated by TA on the feasible retimed graph G_r
- 5. Retime-General decreases period until it becomes infeasible
- 6. Period larger than the infeasible period is declared optimal.

ILP Formulation

• We use a modification to PO(r)

$$PO^*(r) \triangleq \forall (i,j) \in E : 0 \le w_r(i,j) \le 1$$
 (1)

Chuan et al's idea for hold constraint violation

Practical condition that simplifies ILP formulation

ILP formulation for feasibility checking

Corollary

Let G_r be a graph with retiming transformation r and c be a positive real number. c is a feasible clock period if for every edge pair $e = (\hat{u}, u), \ \hat{e} = (v, \hat{v}) \in I$ such that such that $\hat{u} \rightarrow_e u \rightsquigarrow v \rightarrow_{\hat{e}} \hat{v}$ and $D(e, \hat{e}) > c$, we have

$$w_r(e) + w_r(\hat{e}) <= 1 + W_r(u, v)$$

▶ 4 integer variables, Bellman-Ford algorithm can't be used

ILP Formulation

► We use a modification to PO(r) $PO^*(r) \triangleq \forall (i,j) \in E : 0 \le w_r(i,j) \le 1$ (1)

Chuan et al's idea for hold constraint violation

- Practical condition that simplifies ILP formulation
- ILP formulation for feasibility checking

Corollary

Let G_r be a graph with retiming transformation r and c be a positive real number. c is a feasible clock period if for every edge pair $e = (\hat{u}, u), \hat{e} = (v, \hat{v}) \in I$ such that such that $\hat{u} \rightarrow_e u \rightsquigarrow v \rightarrow_{\hat{e}} \hat{v}$ and $D(e, \hat{e}) > c$, we have

$$w_r(e) + w_r(\hat{e}) <= 1 + W_r(u, v)$$

▶ 4 integer variables, Bellman-Ford algorithm can't be used

ILP Formulation

► We use a modification to PO(r) $PO^*(r) \triangleq \forall (i,j) \in E : 0 \le w_r(i,j) \le 1$ (1)

Chuan et al's idea for hold constraint violation

- Practical condition that simplifies ILP formulation
- ILP formulation for feasibility checking

Corollary

Let G_r be a graph with retiming transformation r and c be a positive real number. c is a feasible clock period if for every edge pair $e = (\hat{u}, u), \ \hat{e} = (v, \hat{v}) \in I$ such that such that $\hat{u} \rightarrow_e u \rightsquigarrow v \rightarrow_{\hat{e}} \hat{v}$ and $D(e, \hat{e}) > c$, we have

$$w_r(e) + w_r(\hat{e}) <= 1 + W_r(u, v)$$

4 integer variables, Bellman-Ford algorithm can't be used

Traditional Algorithm Shortcomings

- ► Too many constraints in ILP formulation as *D* is dense
- Generating D and W matrix requires all pair shortest path algorithm
- Generating D and W matrix needs $O(n^2)$ and $O(m^2)$ memory
- Needs an artificial clock period decrease factor

Proposed Algorithm

iRetILP uses only critical constraints to generate the optimal clock period, eliminate the need to generate matrix D and W and also removes the need to employ artificial clock period decrease factor.

- iRetILP solves a number of ILP formulations.
- Each formulation has few constraints.
- Total runtime is significantly improved.

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

We use 6 variables in our algorithm

- Optimal clock period ϕ^* and register vector F^* of size m
- Intermediate clock period ϕ and register vector F of size m
- Critical constraint vector CV initialized to \emptyset
- Retiming label r for each vertex
- \blacktriangleright TA is used to generate initial clock period ϕ
- F is populated with the current register count w(e)

$$0 \le w(e) \le 1$$

r label on each vertex initialized to 0

Iterations in iRetILP are used to either

- Generate optimal period ϕ^*
- Provide proof that ϕ is optimal
- ► Each iteration of iRetILP generates a retimed graph G_r
 - ► Identifies a unique critical constraint, populates to CV
 - \blacktriangleright If the critical period improves present clock period ϕ
 - Register assignment of G_r is updated to F^*
 - ϕ^* is updated to present critical period
- Critical constraint at each iteration generated using ILP

Iterations illustrated

Loop

- 1. For all $e=(u,v)\in\mathsf{E}{:}$ $\mathsf{F}[e]=w[e]+r[v]$ r[u]
- 2. Invoke TA:

3. Add (e, \hat{e}) to CV

4. If
$$\phi < \phi^*$$
: $\phi^* = \phi$, $F^* = F$

- 5. Formulate and Solve ILP to generate next r assignments
- 6. Terminate if ILP is infeasible or there is critical cycle

Consider an arbitrary iteration of iRetILP

- r be the retiming transformation associated with this iteration
- ▶ Generate an ILP where constraints from CV do not appear as clock period of G_r
 - Each entry $c \in CV$ has edges e, \hat{e} associated with it
 - Retiming associated with constraint c be r_c

 $w_{r_c}(e), w_{r_c}(\hat{e}) = 1$

• For retiming r, critical path $e \rightsquigarrow \hat{e}$ is equivalent to

$$w_r(\hat{u}, u) = 1 \land w_r(v, \hat{v}) = 1 \Rightarrow W_r(u, v) = 0$$

ILP for Unique Constraint Generation (contd.)

• Lemma to be satisfied so that $e \rightsquigarrow \hat{e}$ does not exist in G_r

Lemma (G_r ILP formulation)

Formation of G_r used the following integer linear constraints for every edge $e \in I$, $\hat{e} \in C$, we have

 $0 \leq w_r(e) \leq 1, w_r(\hat{e}) = 0$

for every 2-tuple { (e, ê), w_{uv} } $\in CV$

$$w_r(e) + w_r(\hat{e}) <= w_{uv} + 1$$

• How to generate w_{uv} for each constraint $c \in CV$?

• w_{uv} is equivalent to $W(u, v) + r_c(v) - r_c(u)$

- Traditional algorithm had W matrix, we do not have
- We have a property, when c was critical, $W_r(u, v) = 0$

$$W(u,v) = r_c(u) - r_c(v)$$

ILP for Unique Constraint Generation (contd.)

• Lemma to be satisfied so that $e \rightsquigarrow \hat{e}$ does not exist in G_r

Lemma (*G*_r ILP formulation)

Formation of G_r used the following integer linear constraints for every edge $e \in I$, $\hat{e} \in C$, we have

 $0 \le w_r(e) \le 1, w_r(\hat{e}) = 0$

for every 2-tuple $\{ (e, \hat{e}), w_{uv} \} \in CV$

 $w_r(e) + w_r(\hat{e}) <= w_{uv} + 1$

- How to generate w_{uv} for each constraint $c \in CV$?
 - w_{uv} is equivalent to $W(u, v) + r_c(v) r_c(u)$
 - Traditional algorithm had W matrix, we do not have
 - We have a property, when c was critical, $W_r(u, v) = 0$

$$W(u,v)=r_c(u)-r_c(v)$$

Theorem for algorithm correctness

Theorem (Critical Constraints)

Each iteration of our algorithm finds a entry from D matrix which is one of the timing feasibility constraint for the ILP formulation used by Retime-General with c as the optimal clock period ϕ^* .

Invariants used in our iterations

Theorem (Loop Invariant)

Loop invariant of iRetILP is that the integer linear program generated by Lemma 1 is either feasible or there are no critical cycle in the graph G_r .

Complexity Analysis

- Let size of *CV* be *k* upon termination.
- Let size of *CV* be *s_i* at i'th iteration
- Let complexity of solving ILP = $\eta \cdot s_i$ (Linear function)
- ▶ iRetILP's runtime *T* is dominated by ILP solver's runtime

$$T = \sum_{i=0}^{k} \eta \cdot s_i$$

- $T = O(k^2)$: quadratic function of total critical constraints
- Peak memory consumption M = O(k)
- iRetILP generates significantly lesser constraints than Retime-General

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

Experimental Setup

- Random delay parameter generation
- ► Floyd-Warshall to generate D,W matrix for Retime-General
- ▶ ILP solved using CPLEX C++ API level integration
- Divided ISCAS benchmarks into two sets, small and big
 - Small benchmarks vertex count: 1K
 - Big benchmarks vertex count: 52K
- Running Retime-General till infeasibility is slow
 - Mentioned in Lalgudi et al's work, they run 34 vertices
 - s298 (368 vertices) didn't terminate in 6 hours
 - iRetILP on s298 terminated in 91.12 secs
- iRetILP is used to generate optimal period
 - Retime-General is terminated at optimal period
 - Comparisons exclude infeasibility proof runtime

Performance Comparison : Small Benchmarks

- Blue bar : Constraint solving speedup
- Red bar : Total speedup (includes Floyd-Warshall runtime)

Memory Comparison : Small Benchmarks

Peak Memory consumption of selected benchmarks

- Larger than 200 critical constraints
- Blue bar indicates Retime-General
- Red bar indicates iRetILP

iRetILP incremental run : Large Benchmarks

Incremental mode iRetILP runs on ISCAS89 Large benchmark

- R100: Time taken for 100 iterations
- ▶ R200: Time taken for 200 iterations

Runtime scaling in incremental runs

Clock period improvement

iRetILP is run in incremental mode, initial clock period $\phi_{\textit{init}}$

- ϕ_{100} : Optimized period after 100 iterations
- ϕ_{200} : Optimized period after 200 iterations
- Period decrease (PD) computed as

$$\mathsf{PD} = rac{(\phi_{200}-\phi_{100})}{\phi_{init}}\cdot 100$$

Period decrease over incremental runs

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

- On an average 100X faster than Retime-General
- Upto 40X less peak memory consumption than Retime-General
- Infeasibility proof should be avoided for practical usage
- For bigger benchmarks, incremental algorithm can be stopped any time, generating a feasible upper bound of optimal clock period
- Minimum area retiming for general delay models
 - Optimization version of the same problem
 - Experimenting with extended iRetILP for min-area retiming
- Open questions ?
 - Complexity class of 4 variable ILP formulation
 - Can we generate a polynomial time algorithm ?

- On an average 100X faster than Retime-General
- Upto 40X less peak memory consumption than Retime-General
- Infeasibility proof should be avoided for practical usage
- For bigger benchmarks, incremental algorithm can be stopped any time, generating a feasible upper bound of optimal clock period
- Minimum area retiming for general delay models
 - Optimization version of the same problem
 - Experimenting with extended iRetILP for min-area retiming
- Open questions ?
 - Complexity class of 4 variable ILP formulation
 - Can we generate a polynomial time algorithm ?

- On an average 100X faster than Retime-General
- Upto 40X less peak memory consumption than Retime-General
- Infeasibility proof should be avoided for practical usage
- For bigger benchmarks, incremental algorithm can be stopped any time, generating a feasible upper bound of optimal clock period
- Minimum area retiming for general delay models
 - Optimization version of the same problem
 - Experimenting with extended iRetILP for min-area retiming
- Open questions ?
 - Complexity class of 4 variable ILP formulation
 - Can we generate a polynomial time algorithm ?

- On an average 100X faster than Retime-General
- Upto 40X less peak memory consumption than Retime-General
- Infeasibility proof should be avoided for practical usage
- For bigger benchmarks, incremental algorithm can be stopped any time, generating a feasible upper bound of optimal clock period
- Minimum area retiming for general delay models
 - Optimization version of the same problem
 - Experimenting with extended iRetILP for min-area retiming
- Open questions ?
 - Complexity class of 4 variable ILP formulation
 - Can we generate a polynomial time algorithm ?

Q & A

Thank you!