
iRetILP : An efficient incremental algorithm for
min-period retiming under general delay model

Debasish Das∗, Jia Wang† and Hai Zhou
EECS, Northwestern University, Evanston, IL 60201

∗Place and Route Group, Mentor Graphics, San Jose, CA 95131
†ECE, Illinois Institute of Technology, Chicago, IL 60616

January 19, 2010

1 / 43

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

2 / 43

Delay Models

I Simple Delay Model
I Constant combinational delays are considered

I General Delay Model (Similar to Lalgudi et al.) considers 4
physical effects

I Clock skews
I Load dependent FF setup times
I Combinational gate delays
I Interconnect delays

3 / 43

Delay Models

I Simple Delay Model
I Constant combinational delays are considered

I General Delay Model (Similar to Lalgudi et al.) considers 4
physical effects

I Clock skews
I Load dependent FF setup times
I Combinational gate delays
I Interconnect delays

3 / 43

Retiming

I Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]

I Retiming under simple constant delay model
I Polynomial time algorithm proposed by Leiserson et al.
I An Efficient implementation proposed by Shenoy et al.
I Algorithm considering hold conditions proposed by

Papaethymiou et al.
I Incremental algorithm proposed by Zhou et al., Lin et al.

I Retiming under general delay model
I Branch and Bound Algorithm proposed by Soyata et al.
I Integer linear programming based algorithm proposed by

Lalgudi et al.

4 / 43

Retiming

I Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]

I Retiming under simple constant delay model
I Polynomial time algorithm proposed by Leiserson et al.
I An Efficient implementation proposed by Shenoy et al.
I Algorithm considering hold conditions proposed by

Papaethymiou et al.
I Incremental algorithm proposed by Zhou et al., Lin et al.

I Retiming under general delay model
I Branch and Bound Algorithm proposed by Soyata et al.
I Integer linear programming based algorithm proposed by

Lalgudi et al.

4 / 43

Retiming

I Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]

I Retiming under simple constant delay model
I Polynomial time algorithm proposed by Leiserson et al.
I An Efficient implementation proposed by Shenoy et al.
I Algorithm considering hold conditions proposed by

Papaethymiou et al.
I Incremental algorithm proposed by Zhou et al., Lin et al.

I Retiming under general delay model
I Branch and Bound Algorithm proposed by Soyata et al.
I Integer linear programming based algorithm proposed by

Lalgudi et al.

4 / 43

Circuit classification

General delay model classifies the circuit into two categories

I Begin/end extendible circuit

Property (Path Delay Monotonicity)

Delay of a register-to-register path decreases as the number of
combinational elements on the path is decreased.

I Efficiently solved by extension of algorithm proposed by
Shenoy et al.

I Efficiently solved by extension of incremental algorithm
proposed by Zhou et al.

I Two-way extendible circuit
I Can be solved by ILP based algorithm proposed by Lalgudi et

al.
I Inefficient in terms of performance and memory
I Motivated us to develop iRetILP

5 / 43

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

6 / 43

Sequential System Optimization using Retiming

I Why General Delay Model ?
I Considers prominent physical effects
I More important for lower process nodes

I Min-period retiming:
I Relocate FFs to minimize clock period.
I Ignore cost – can increase FF area.
I Lalgudi et al’s algorithm solved min-period retiming.

I Min-area retiming:
I Relocate FFs to minimize FF are under given clock period.

I Why study Min-period retiming ?
I Min-area retiming needs a clock period.
I Min-period retiming drives Min-area retiming.

I This paper focusses on Min-period retiming

7 / 43

Circuit Graph Generation

Circuit graph G = (V ,E) of n vertices and m edges
I Each vertex v ∈ V can be

I primary input/output port
I input/output port of combinational cell

I Each edge e ∈ V can be
I Combinational edge c with 2 labels

I δ(c) : Minimum load dependent gate delay
I ∆(c) : Maximum load dependent gate delay

I Interconnect edge i with 4 labels
I d(i) : Interconnect delay without FF
I α(i) : Interconnect delay driving FF input port
I β(i) : Interconnect delay driven by FF output port
I w(i) : Number of FFs on interconnect

8 / 43

Circuit Graph Example

Example of our circuit graph generation

9 / 43

Extension of Circuit Graph

Circuit Extension for concise treatment of timing constraints

I Two vertices added : H-IN and H-OUT
I 0 delay edges added from

I Primary outputs to H-IN
I H-OUT to Primary inputs
I H-IN to H-OUT

I One Virtual FF added on H-IN to H-OUT edge

10 / 43

Example of Extended Circuit Graph

Following figure shows the extended circuit graph

11 / 43

Retiming Feasibility Constraints

I Retiming is represented by an integer-valued vertex label

r : V → Z

r(v) is the # FFs moved from fanout interconnect edges to
fanin interconnect edges of the ports of gate v

I Number of FFs on edge (i,j) is computed as

wr (i , j)
∆
= w(i , j) + r(j)− r(i)

I Retiming feasibility constraints

P0(r) : wr (i , j) ≥ 0, ∀(i , j) ∈ E

wr (i , j) = 0, ∀(i , j) ∈ C ,wr (H-OUT,H-IN) = 1

12 / 43

Timing Constraints in Retiming

I For ease of presentation we focus on setup constraints
I Use label T : V → R+ to denote latest arrival time at each

vertex
I Clock period of the circuit is φ
I Following inequalities model the timing constraints

P1(r , φ) : ∃T such that:

T (i) + ∆(i , j)≤T (j),∀(i , j) ∈ C

T (i) + d(i , j)≤T (j), ∀(i , j) ∈ I ∧ wr (i , j) = 0

T (i) + α(i , j)≤φ ∧ T (j)≤β(i , j),∀(i , j) ∈ I ∧ wr (i , j)≥1

Theorem

The clock period of the circuit G after retiming r is given by

φ(r) = max{T (i) + α(i , j) : ∀(i , j) ∈ I ∧ wr (i , j)≥1}.

13 / 43

Timing Analysis Algorithm TA

Given an assignment of wr on each edge, TA provides 3 procedures
I get-period :

I Computes critical path e e′

I Returns φ as delay of critical path

I get-head-edge : returns e ′

I get-tail-edge : returns e

Theorem

Given a graph G of n vertices and m edges, the algorithm TA runs
in O(m + n) time.

14 / 43

Problem Formulation

We formulate the following Setup Retiming problem

Problem (Generalized Setup Retiming)

Given a circuit G = (V ,E) and the number of FFs w on the
edges, find a retiming r such that the retiming validity constraints
P0(r) and timing feasibility constraints P1(r , φ) can be satisfied
with the minimum clock period φ.

15 / 43

Sub-optimality of Polynomial algorithms

Polynomial Retiming Algorithm : Step 1

16 / 43

Sub-optimality of Polynomial algorithms

Polynomial Retiming Algorithm : Step 2

17 / 43

Sub-optimality of Polynomial algorithms

Polynomial Retiming Algorithm : Step 3

18 / 43

Sub-optimality of Polynomial algorithms

Sub-optimality of Polynomial Retiming Algorithm

19 / 43

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

20 / 43

Traditional Algorithm Preprocessing

We call the algorithm proposed by Lalgudi et al. as Retime-General

I Extension of Leisserson and Saxe’s Algorithm.
I Two matrices : W (size n × n) and D (size m × m) used
I W[u][v] indicates minimum register count among all paths

between vertices u and v

W (u, v) = min{w(p) : u p v}

I Given pair of edges e = (û, u), ê = (v , v̂), D(e,ê) is computed
as

D(e, ê) = max{Ω(e, p, ê) : û →e u p v →ê v̂ ,

w(p) = W (u, v)}

I Ω is longest propagation delay from e to ê under minimum
register count constraint

Matrix D stores all possible clock periods
21 / 43

Clock Period Feasibility Theorem

I Matrix D and W is a preprocessing stage for Retime-General

I Given graph G , Gr is obtained using retiming transformation r

I For period c, conditions that satisfy setup constraints in Gr

Theorem (ILP Constraint)

Let Gr be a graph with retiming transformation r : V → Z and c
be a positive real number. c is a feasible clock period for Gr if and
only if for every edge u →e v ∈ I , we have

wr (e) ≥ 0

and for every edge pair e, ê ∈ I such that û →e u v →ê v̂ and
D(e,ê) > c, we have

Wr (u, v) = 0⇒ (wr (e) = 0 ∨ wr (ê) = 0)

22 / 43

Traditional Algorithm Overview

1. Generate a clock period bound φub using TA

2. Linear search to generate period c < φub

3. Feasibility of c is checked using ILP Constraint Theorem

4. Clock period updated by TA on the feasible retimed graph Gr

5. Retime-General decreases period until it becomes infeasible

6. Period larger than the infeasible period is declared optimal.

23 / 43

ILP Formulation

I We use a modification to PO(r)

PO∗(r)
∆
= ∀(i , j) ∈ E : 0 ≤ wr (i , j) ≤ 1 (1)

I Chuan et al’s idea for hold constraint violation
I Practical condition that simplifies ILP formulation

I ILP formulation for feasibility checking

Corollary

Let Gr be a graph with retiming transformation r and c be a
positive real number. c is a feasible clock period if for every edge
pair e = (û, u), ê = (v , v̂) ∈ I such that such that û →e u
v →ê v̂ and D(e,ê) > c, we have

wr (e) + wr (ê) <= 1 + Wr (u, v)

I 4 integer variables, Bellman-Ford algorithm can’t be used
24 / 43

ILP Formulation

I We use a modification to PO(r)

PO∗(r)
∆
= ∀(i , j) ∈ E : 0 ≤ wr (i , j) ≤ 1 (1)

I Chuan et al’s idea for hold constraint violation
I Practical condition that simplifies ILP formulation

I ILP formulation for feasibility checking

Corollary

Let Gr be a graph with retiming transformation r and c be a
positive real number. c is a feasible clock period if for every edge
pair e = (û, u), ê = (v , v̂) ∈ I such that such that û →e u
v →ê v̂ and D(e,ê) > c, we have

wr (e) + wr (ê) <= 1 + Wr (u, v)

I 4 integer variables, Bellman-Ford algorithm can’t be used
24 / 43

ILP Formulation

I We use a modification to PO(r)

PO∗(r)
∆
= ∀(i , j) ∈ E : 0 ≤ wr (i , j) ≤ 1 (1)

I Chuan et al’s idea for hold constraint violation
I Practical condition that simplifies ILP formulation

I ILP formulation for feasibility checking

Corollary

Let Gr be a graph with retiming transformation r and c be a
positive real number. c is a feasible clock period if for every edge
pair e = (û, u), ê = (v , v̂) ∈ I such that such that û →e u
v →ê v̂ and D(e,ê) > c, we have

wr (e) + wr (ê) <= 1 + Wr (u, v)

I 4 integer variables, Bellman-Ford algorithm can’t be used
24 / 43

Traditional Algorithm Shortcomings

I Too many constraints in ILP formulation as D is dense

I Generating D and W matrix requires all pair shortest path
algorithm

I Generating D and W matrix needs O(n2) and O(m2) memory

I Needs an artificial clock period decrease factor

Proposed Algorithm

iRetILP uses only critical constraints to generate the optimal clock
period, eliminate the need to generate matrix D and W and also
removes the need to employ artificial clock period decrease factor.

I iRetILP solves a number of ILP formulations.

I Each formulation has few constraints.

I Total runtime is significantly improved.

25 / 43

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

26 / 43

Initialization

I We use 6 variables in our algorithm
I Optimal clock period φ∗ and register vector F ∗ of size m
I Intermediate clock period φ and register vector F of size m
I Critical constraint vector CV initialized to ∅
I Retiming label r for each vertex

I TA is used to generate initial clock period φ

I F is populated with the current register count w(e)

0 ≤ w(e) ≤ 1

I r label on each vertex initialized to 0

27 / 43

Iterations

I Iterations in iRetILP are used to either
I Generate optimal period φ∗

I Provide proof that φ is optimal

I Each iteration of iRetILP generates a retimed graph Gr

I Identifies a unique critical constraint, populates to CV
I If the critical period improves present clock period φ

I Register assignment of Gr is updated to F ∗

I φ∗ is updated to present critical period

I Critical constraint at each iteration generated using ILP

28 / 43

Iterations illustrated

Loop

1. For all e = (u,v) ∈ E: F[e] = w[e] + r[v] - r[u]

2. Invoke TA:
I φ = get-period()
I e = get-head-edge(), ê = get-tail-edge()

3. Add (e,ê) to CV

4. If φ < φ∗: φ∗ = φ, F ∗ = F

5. Formulate and Solve ILP to generate next r assignments

6. Terminate if ILP is infeasible or there is critical cycle

29 / 43

ILP for Unique Constraint Generation

Consider an arbitrary iteration of iRetILP

I r be the retiming transformation associated with this iteration
I Generate an ILP where constraints from CV do not appear as

clock period of Gr

I Each entry c ∈ CV has edges e, ê associated with it
I Retiming associated with constraint c be rc

wrc (e),wrc (ê) = 1

I For retiming r , critical path e ê is equivalent to

wr (û, u) = 1 ∧ wr (v , v̂) = 1⇒Wr (u, v) = 0

30 / 43

ILP for Unique Constraint Generation (contd.)

I Lemma to be satisfied so that e ê does not exist in Gr

Lemma (Gr ILP formulation)

Formation of Gr used the following integer linear constraints
for every edge e ∈ I , ê ∈ C , we have

0 ≤ wr (e) ≤ 1,wr (ê) = 0

for every 2-tuple { (e, ê), wuv } ∈ CV

wr (e) + wr (ê) <= wuv + 1

I How to generate wuv for each constraint c ∈ CV ?
I wuv is equivalent to W (u, v) + rc(v) - rc(u)
I Traditional algorithm had W matrix, we do not have
I We have a property, when c was critical,Wr (u, v) = 0

W (u, v) = rc(u)− rc(v)
31 / 43

ILP for Unique Constraint Generation (contd.)

I Lemma to be satisfied so that e ê does not exist in Gr

Lemma (Gr ILP formulation)

Formation of Gr used the following integer linear constraints
for every edge e ∈ I , ê ∈ C , we have

0 ≤ wr (e) ≤ 1,wr (ê) = 0

for every 2-tuple { (e, ê), wuv } ∈ CV

wr (e) + wr (ê) <= wuv + 1

I How to generate wuv for each constraint c ∈ CV ?
I wuv is equivalent to W (u, v) + rc(v) - rc(u)
I Traditional algorithm had W matrix, we do not have
I We have a property, when c was critical,Wr (u, v) = 0

W (u, v) = rc(u)− rc(v)
31 / 43

Correctness and Termination

Theorem for algorithm correctness

Theorem (Critical Constraints)

Each iteration of our algorithm finds a entry from D matrix which
is one of the timing feasibility constraint for the ILP formulation
used by Retime-General with c as the optimal clock period φ∗.

Invariants used in our iterations

Theorem (Loop Invariant)

Loop invariant of iRetILP is that the integer linear program
generated by Lemma 1 is either feasible or there are no critical
cycle in the graph Gr .

32 / 43

Complexity Analysis

I Let size of CV be k upon termination.

I Let size of CV be si at i’th iteration

I Let complexity of solving ILP = η · si (Linear function)

I iRetILP’s runtime T is dominated by ILP solver’s runtime

T =
k∑

i=0

η · si

I T = O(k2) : quadratic function of total critical constraints

I Peak memory consumption M = O(k)

I iRetILP generates significantly lesser constraints than
Retime-General

33 / 43

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

34 / 43

Experimental Setup

I Random delay parameter generation

I Floyd-Warshall to generate D,W matrix for Retime-General

I ILP solved using CPLEX C++ API level integration
I Divided ISCAS benchmarks into two sets, small and big

I Small benchmarks vertex count: 1K
I Big benchmarks vertex count: 52K

I Running Retime-General till infeasibility is slow
I Mentioned in Lalgudi et al’s work, they run 34 vertices
I s298 (368 vertices) didn’t terminate in 6 hours
I iRetILP on s298 terminated in 91.12 secs

I iRetILP is used to generate optimal period
I Retime-General is terminated at optimal period
I Comparisons exclude infeasibility proof runtime

35 / 43

Performance Comparison : Small Benchmarks

I Blue bar : Constraint solving speedup

I Red bar : Total speedup (includes Floyd-Warshall runtime)

36 / 43

Memory Comparison : Small Benchmarks

Peak Memory consumption of selected benchmarks

I Larger than 200 critical constraints

I Blue bar indicates Retime-General

I Red bar indicates iRetILP

37 / 43

iRetILP incremental run : Large Benchmarks

Incremental mode iRetILP runs on ISCAS89 Large benchmark

I R100: Time taken for 100 iterations

I R200: Time taken for 200 iterations

Runtime scaling in incremental runs

38 / 43

Clock period improvement

iRetILP is run in incremental mode, initial clock period φinit

I φ100 : Optimized period after 100 iterations
I φ200 : Optimized period after 200 iterations
I Period decrease (PD) computed as

PD =
(φ200 − φ100)

φinit
· 100

Period decrease over incremental runs

39 / 43

Outline

Motivation

Problem Formulation

Algorithmic Ideas

Algorithmic Details

Experimental Results

Conclusions and Future work

40 / 43

Conclusions and Future work

I Efficient incremental min-period retiming algorithm
I On an average 100X faster than Retime-General
I Upto 40X less peak memory consumption than Retime-General
I Infeasibility proof should be avoided for practical usage

I For bigger benchmarks, incremental algorithm can be stopped
any time, generating a feasible upper bound of optimal clock
period

I Minimum area retiming for general delay models
I Optimization version of the same problem
I Experimenting with extended iRetILP for min-area retiming

I Open questions ?
I Complexity class of 4 variable ILP formulation
I Can we generate a polynomial time algorithm ?

41 / 43

Conclusions and Future work

I Efficient incremental min-period retiming algorithm
I On an average 100X faster than Retime-General
I Upto 40X less peak memory consumption than Retime-General
I Infeasibility proof should be avoided for practical usage

I For bigger benchmarks, incremental algorithm can be stopped
any time, generating a feasible upper bound of optimal clock
period

I Minimum area retiming for general delay models
I Optimization version of the same problem
I Experimenting with extended iRetILP for min-area retiming

I Open questions ?
I Complexity class of 4 variable ILP formulation
I Can we generate a polynomial time algorithm ?

41 / 43

Conclusions and Future work

I Efficient incremental min-period retiming algorithm
I On an average 100X faster than Retime-General
I Upto 40X less peak memory consumption than Retime-General
I Infeasibility proof should be avoided for practical usage

I For bigger benchmarks, incremental algorithm can be stopped
any time, generating a feasible upper bound of optimal clock
period

I Minimum area retiming for general delay models
I Optimization version of the same problem
I Experimenting with extended iRetILP for min-area retiming

I Open questions ?
I Complexity class of 4 variable ILP formulation
I Can we generate a polynomial time algorithm ?

41 / 43

Conclusions and Future work

I Efficient incremental min-period retiming algorithm
I On an average 100X faster than Retime-General
I Upto 40X less peak memory consumption than Retime-General
I Infeasibility proof should be avoided for practical usage

I For bigger benchmarks, incremental algorithm can be stopped
any time, generating a feasible upper bound of optimal clock
period

I Minimum area retiming for general delay models
I Optimization version of the same problem
I Experimenting with extended iRetILP for min-area retiming

I Open questions ?
I Complexity class of 4 variable ILP formulation
I Can we generate a polynomial time algorithm ?

41 / 43

Q & A

42 / 43

Thank you!

43 / 43

	Motivation
	Problem Formulation
	Algorithmic Ideas
	Algorithmic Details
	Experimental Results
	Conclusions and Future work

