iRetILP : An efficient incremental algorithm for
min-period retiming under general delay model

Debasish Das*, Jia WangT and Hai Zhou
EECS, Northwestern University, Evanston, IL 60201
*Place and Route Group, Mentor Graphics, San Jose, CA 95131
TECE, Illinois Institute of Technology, Chicago, IL 60616

January 19, 2010

Motivation

Problem Formulation
Algorithmic Ideas
Algorithmic Details
Experimental Results

Conclusions and Future work

2/43

Delay Models

» Simple Delay Model
» Constant combinational delays are considered

43

Delay Models

» Simple Delay Model
» Constant combinational delays are considered
» General Delay Model (Similar to Lalgudi et al.) considers 4
physical effects
Clock skews
Load dependent FF setup times
Combinational gate delays
Interconnect delays

v

v vy

43

Retiming

» Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]

43

Retiming

» Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]

» Retiming under simple constant delay model

» Polynomial time algorithm proposed by Leiserson et al.
» An Efficient implementation proposed by Shenoy et al.

> Algorithm considering hold conditions proposed by
Papaethymiou et al.

Incremental algorithm proposed by Zhou et al., Lin et al.

v

Retiming

» Relocate flip-flops (FFs) w/o changing circuit functionality.

[Leiserson and Saxe 83]
» Retiming under simple constant delay model
» Polynomial time algorithm proposed by Leiserson et al.
» An Efficient implementation proposed by Shenoy et al.
> Algorithm considering hold conditions proposed by
Papaethymiou et al.
> Incremental algorithm proposed by Zhou et al., Lin et al.
» Retiming under general delay model
» Branch and Bound Algorithm proposed by Soyata et al.
> Integer linear programming based algorithm proposed by

Lalgudi et al.

43

Circuit classification

General delay model classifies the circuit into two categories

> Begin/end extendible circuit

Property (Path Delay Monotonicity)

Delay of a register-to-register path decreases as the number of
combinational elements on the path is decreased.

» Efficiently solved by extension of algorithm proposed by
Shenoy et al.

» Efficiently solved by extension of incremental algorithm
proposed by Zhou et al.

» Two-way extendible circuit
» Can be solved by ILP based algorithm proposed by Lalgudi et
al.
> Inefficient in terms of performance and memory
» Motivated us to develop iRetILP

Motivation

Problem Formulation
Algorithmic Ideas
Algorithmic Details
Experimental Results

Conclusions and Future work

6/43

Sequential System Optimization using Retiming

v

Why General Delay Model ?

» Considers prominent physical effects
» More important for lower process nodes

v

Min-period retiming:
» Relocate FFs to minimize clock period.
> lIgnore cost — can increase FF area.
» Lalgudi et al's algorithm solved min-period retiming.

v

Min-area retiming:

> Relocate FFs to minimize FF are under given clock period.

v

Why study Min-period retiming ?
» Min-area retiming needs a clock period.
» Min-period retiming drives Min-area retiming.

v

This paper focusses on Min-period retiming

~

43

Circuit Graph Generation

Circuit graph G = (V, E) of n vertices and m edges
» Each vertex v € V can be
> primary input/output port
» input/output port of combinational cell
» Each edge e € V can be
» Combinational edge ¢ with 2 labels

> 5(c) : Minimum load dependent gate delay
» A(c) : Maximum load dependent gate delay

> Interconnect edge i with 4 labels

> d(i) : Interconnect delay without FF

> «(f) : Interconnect delay driving FF input port

> (i) : Interconnect delay driven by FF output port
> w(i) : Number of FFs on interconnect

43

Circuit Graph Example

Example of our circuit graph generation

O
’D/@

43

Extension of Circuit Graph

Circuit Extension for concise treatment of timing constraints

» Two vertices added : H-IN and H-OUT
» 0 delay edges added from

» Primary outputs to H-IN
» H-OUT to Primary inputs
» H-IN to H-OUT

» One Virtual FF added on H-IN to H-OUT edge

10/43

Example of Extended Circuit Graph

Following figure shows the extended circuit graph

11/43

Retiming Feasibility Constraints

> Retiming is represented by an integer-valued vertex label

r:V -7

r(v) is the # FFs moved from fanout interconnect edges to
fanin interconnect edges of the ports of gate v

gate

R

flipzflop

s CH G

r(3),r(4),r(5)=0 1(3),r(4),r(5) =1

1(3),r(4),r(5) =2

» Number of FFs on edge (i,j) is computed as

Wr(’;./) = W(lv./) + I‘(J) - r(’)

» Retiming feasibility constraints

PO(r) :

wr(i,j) 2 0,V(i,j) € E

w,(i,j) =0,Y(i,j) € C,w,(H-OUT,H-IN) =1

12 /43

Timing Constraints in Retiming

» For ease of presentation we focus on setup constraints
» Use label T : V — R* to denote latest arrival time at each
vertex
» Clock period of the circuit is ¢
» Following inequalities model the timing constraints
P1(r,¢) : 3T such that:
T()+AG)<T(),V(i,j) e C
T(0) + d(i,)< T(). (i j) € I A wili,j) = 0
T() +ali,))<e A TG)<B(,), V(i)) € TAwe(i,j)>1

The clock period of the circuit G after retiming r is given by

o(r) = max{T(i)+ a(i,j) : Y(i,j) € I Nw(i,j)>1}.

13 /43

Timing Analysis Algorithm TA

Given an assignment of w, on each edge, TA provides 3 procedures
> get-period :
» Computes critical path e ~ €’
» Returns ¢ as delay of critical path

» get-head-edge : returns ¢’

> get-tail-edge : returns e

Theorem

Given a graph G of n vertices and m edges, the algorithm TA runs
in O(m + n) time.

14 /43

Problem Formulation

We formulate the following Setup Retiming problem

Problem (Generalized Setup Retiming)

Given a circuit G = (V, E) and the number of FFs w on the
edges, find a retiming r such that the retiming validity constraints
PO(r) and timing feasibility constraints P1(r,¢) can be satisfied
with the minimum clock period ¢.

15/43

Sub-optimality of Polynomial algorithms

®W_1,1) (LMV Nﬁ).l.l)
5

—>
122 G220 1122
11.2.2) (1122
@) (b)

Polynomial Retiming Algorithm : Step 1

16

43

Sub-optimality of Polynomial algorithms

(1.2.21) Y(‘M’l) (1.2.21) (1,011)
4\ e
Y

AN
— \ \
(11.22) (@221
@22h ! (1 \ (1,1,22)

(11.22) (11.22)
(a) (b)

Polynomial Retiming Algorithm : Step 2

17 /43

Sub-optimality of Polynomial algorithms

122 1) 0.1,1) 1,2.2 1) (1,0.1,1)
—
N

(1,2.2,1) \ \
(1.1,2.2) (1,1,2.2)
(a (b)

Polynomial Retiming Algorithm : Step 3

18 /43

Sub-optimality of Polynomial algorithms

(1,2.2,1)/ 1,0.11) (1.2.2,1)

1221 1.2.2,1)
11,22

1122
1122 (11.2.2)
(a) Suboptimal period 7.4 (b) Optimal period 7.3

Sub-optimality of Polynomial Retiming Algorithm

19/43

Motivation

Problem Formulation
Algorithmic Ideas
Algorithmic Details
Experimental Results

Conclusions and Future work

20/43

Traditional Algorithm Preprocessing

We call the algorithm proposed by Lalgudi et al. as Retime-General

v

Extension of Leisserson and Saxe’s Algorithm.

v

Two matrices : W (size n x n) and D (size m x m) used

v

W/(u][v] indicates minimum register count among all paths
between vertices u and v

W(u,v) = min{w(p): u~>p v}

» Given pair of edges e = (&, u), & = (v, V), D(e,&) is computed
as

D(e,&) = max{Q(e,p,&): 0 —eu~>pv—pl,
w(p) = W(u,v)}

Q is longest propagation delay from e to & under minimum
register count constraint

v

Matrix D stores all possible clock periods
21/43

Clock Period Feasibility Theorem

» Matrix D and W is a preprocessing stage for Retime-General
» Given graph G, G, is obtained using retiming transformation r
» For period ¢, conditions that satisfy setup constraints in G,

Theorem (ILP Constraint)

Let G, be a graph with retiming transformation r : V. — Z and c
be a positive real number. c is a feasible clock period for G, if and
only if for every edge u —. v € |, we have

w,(e) >0

and for every edge pair e, € € | such that it —¢ u ~> v —3 V and
D(e,e) > c, we have

Wi (u,v) =0= (w,(e) =0V w, (&) =0)

Traditional Algorithm Overview

Generate a clock period bound ¢, using TA

Linear search to generate period ¢ < ¢,p

Feasibility of c is checked using ILP Constraint Theorem
Clock period updated by TA on the feasible retimed graph G,

Retime-General decreases period until it becomes infeasible

I o

Period larger than the infeasible period is declared optimal.

23 /43

ILP Formulation

» We use a modification to PO(r)
PO*(r) = VY(i,j)€ E:0<w(i,j)<1 (1)

» Chuan et al's idea for hold constraint violation
» Practical condition that simplifies ILP formulation

24 /43

ILP Formulation

» ILP formulation for feasibility checking

Corollary

Let G, be a graph with retiming transformation r and c be a
positive real number. c is a feasible clock period if for every edge
pair e = (0, u), @ = (v, V) € | such that such that i1 —¢ u ~»

v —a V and D(e,&) > c, we have

we(e) + wr(8) <=1+ Wi (u,v)

24 /43

ILP Formulation

» 4 integer variables, Bellman-Ford algorithm can't be used
24 /43

Traditional Algorithm Shortcomings

» Too many constraints in ILP formulation as D is dense

» Generating D and W matrix requires all pair shortest path
algorithm

» Generating D and W matrix needs O(n?) and O(m?) memory
» Needs an artificial clock period decrease factor

Proposed Algorithm

iRetILP uses only critical constraints to generate the optimal clock
period, eliminate the need to generate matrix D and W and also
removes the need to employ artificial clock period decrease factor.

» [RetILP solves a number of ILP formulations.
» FEach formulation has few constraints.

» Total runtime is significantly improved.

25 /43

Motivation

Problem Formulation
Algorithmic Ideas
Algorithmic Details
Experimental Results

Conclusions and Future work

26 /43

Initialization

» We use 6 variables in our algorithm

Optimal clock period ¢* and register vector F* of size m
Intermediate clock period ¢ and register vector F of size m
Critical constraint vector CV initialized to

Retiming label r for each vertex

vV vy VvYyy

» TA is used to generate initial clock period ¢

> F is populated with the current register count w(e)
0<w(e)<1

» r label on each vertex initialized to 0

Iterations

» lterations in iRetlLP are used to either

» Generate optimal period ¢*
» Provide proof that ¢ is optimal

» Each iteration of iRetILP generates a retimed graph G,

» lIdentifies a unique critical constraint, populates to CV
» If the critical period improves present clock period ¢

> Register assignment of G, is updated to F*
> ¢" is updated to present critical period

» Critical constraint at each iteration generated using ILP

28 /43

Iterations illustrated

Loop
1. For all e = (u,v) € E: Fle] = w[e] + r[v] - r[u]
2. Invoke TA:

> ¢ = get-period()
» e = get-head-edge(), & = get-tail-edge()
3. Add (e,é) to CV
4. Ifp<@*: ¢*=¢, F*=F
5. Formulate and Solve ILP to generate next r assignments

6. Terminate if ILP is infeasible or there is critical cycle

29 /43

ILP for Unique Constraint Generation

Consider an arbitrary iteration of iRetILP
» r be the retiming transformation associated with this iteration

» Generate an ILP where constraints from CV do not appear as
clock period of G,

» Each entry ¢ € CV has edges e, & associated with it
» Retiming associated with constraint ¢ be r.

Wrc(e)7 Wrc(é) = 1
» For retiming r, critical path e ~~ & is equivalent to

w (0, u) =1Aw(v,?)=1= W,(u,v)=0

30/43

ILP for Unique Constraint Generation (contd.)

» Lemma to be satisfied so that e ~~ & does not exist in G,

Lemma (G, ILP formulation)

Formation of G, used the following integer linear constraints
for every edge e € I, @ € C, we have

0<wl(e)<1l,w(&)=0
for every 2-tuple { (e, &), wy, } € CV

we(e) + wr(8) <= wyy, +1

31/43

ILP for Unique Constraint Generation (contd.)

» How to generate w,, for each constraint c € CV ?
> w,, is equivalent to W(u,v) + rc(v) - re(u)
» Traditional algorithm had W matrix, we do not have
» We have a property, when ¢ was critical, W, (u,v) =0

W(u,v) = rc(u) — re(v)

31/43

Correctness and Termination

Theorem for algorithm correctness

Theorem (Critical Constraints)

Each iteration of our algorithm finds a entry from D matrix which
is one of the timing feasibility constraint for the ILP formulation
used by Retime-General with ¢ as the optimal clock period ¢*.

Invariants used in our iterations

Theorem (Loop Invariant)

Loop invariant of iRetILP is that the integer linear program
generated by Lemma 1 is either feasible or there are no critical
cycle in the graph G,.

32/43

Complexity Analysis

Let size of CV be k upon termination.
Let size of CV be s; at i'th iteration

Let complexity of solving ILP = 7 - s; (Linear function)

vV v v VY

iRetlLP’'s runtime T is dominated by ILP solver's runtime

K
T:Zﬁ'si
i=0

T = O(k?) : quadratic function of total critical constraints

v

» Peak memory consumption M = O(k)

> iRetlLP generates significantly lesser constraints than
Retime-General

33/43

Motivation

Problem Formulation
Algorithmic Ideas
Algorithmic Details
Experimental Results

Conclusions and Future work

34/43

Experimental Setup

vV vy VvV Yy

Random delay parameter generation
Floyd-Warshall to generate D,W matrix for Retime-General

ILP solved using CPLEX C+4+ API level integration
Divided ISCAS benchmarks into two sets, small and big

» Small benchmarks vertex count: 1K
» Big benchmarks vertex count: 52K

Running Retime-General till infeasibility is slow
» Mentioned in Lalgudi et al's work, they run 34 vertices
> 5298 (368 vertices) didn't terminate in 6 hours
> iRetlLP on s298 terminated in 91.12 secs

iRetILP is used to generate optimal period

» Retime-General is terminated at optimal period
» Comparisons exclude infeasibility proof runtime

35/43

Performance Comparison : Small Benchmarks

» Blue bar : Constraint solving speedup
» Red bar : Total speedup (includes Floyd-Warshall runtime)

Speedup @ Constraint Soking
m Total

in
[=]

Speedup {Log Scale)

o
=1

o
i
o

0.00 -
AR 2 ~ T S
P TP I Py S P

Benchmarks

36 /43

Memory Comparison : Small Benchmarks

Peak Memory consumption of selected benchmarks
» Larger than 200 critical constraints
» Blue bar indicates Retime-General
» Red bar indicates iRetILP

Memory Comparison

50 4 46.2

mMemory(T)
| Memaory(l)

Percentage of RAM used
)
o
|

Eﬂlﬂﬂm

5382 =400 5546 s832

Benchmarks

iRetILP incremental run : Large Benchmarks

Incremental mode iRetlLP runs on ISCAS89 Large benchmark
» R100: Time taken for 100 iterations
» R200: Time taken for 200 iterations

Runtime scaling in incremental runs

Runtime Scaling

I
n

R200/R100
o -) w
(= T S Y

5953 51424 58234 592341 515880 5188501 36417 38504
Benchmarks

—— R200/R100

38 /43

Clock period improvement

iRetILP is run in incremental mode, initial clock period ¢;n:
> (100 : Optimized period after 100 iterations
> o0 : Optimized period after 200 iterations

» Period decrease

(PD) computed as

(200 — ¢100)

PD =
Dinit

Period decrease over incremental runs

- 100

Period Improvement over iterations

N

&)

- M

=}

O =) s e

Period Decrease Percentage

E

#FF

N Noaa A
Py éﬁi@,sy 5;@“ ﬁi FE S g@*’;@?

Benchmarks

@ Period Decrease

39 /43

Motivation

Problem Formulation
Algorithmic Ideas
Algorithmic Details
Experimental Results

Conclusions and Future work

40/43

Conclusions and Future work

» Efficient incremental min-period retiming algorithm

» On an average 100X faster than Retime-General
» Upto 40X less peak memory consumption than Retime-General
» Infeasibility proof should be avoided for practical usage

41/43

Conclusions and Future work

» For bigger benchmarks, incremental algorithm can be stopped
any time, generating a feasible upper bound of optimal clock
period

41/43

Conclusions and Future work

» Minimum area retiming for general delay models

» Optimization version of the same problem
» Experimenting with extended iRetILP for min-area retiming

41/43

Conclusions and Future work

» Open questions ?
» Complexity class of 4 variable ILP formulation
» Can we generate a polynomial time algorithm 7

41/43

Q& A

Thank you!

	Motivation
	Problem Formulation
	Algorithmic Ideas
	Algorithmic Details
	Experimental Results
	Conclusions and Future work

