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Delay Models

» Simple Delay Model
» Constant combinational delays are considered
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Delay Models

» Simple Delay Model
» Constant combinational delays are considered
» General Delay Model (Similar to Lalgudi et al.) considers 4
physical effects
Clock skews
Load dependent FF setup times
Combinational gate delays
Interconnect delays

v

v vy
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Retiming

» Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]
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Retiming

» Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]

» Retiming under simple constant delay model

» Polynomial time algorithm proposed by Leiserson et al.
» An Efficient implementation proposed by Shenoy et al.

> Algorithm considering hold conditions proposed by
Papaethymiou et al.

Incremental algorithm proposed by Zhou et al., Lin et al.
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Retiming

» Relocate flip-flops (FFs) w/o changing circuit functionality.

[Leiserson and Saxe 83]
» Retiming under simple constant delay model
» Polynomial time algorithm proposed by Leiserson et al.
» An Efficient implementation proposed by Shenoy et al.
> Algorithm considering hold conditions proposed by
Papaethymiou et al.
> Incremental algorithm proposed by Zhou et al., Lin et al.
» Retiming under general delay model
» Branch and Bound Algorithm proposed by Soyata et al.
> Integer linear programming based algorithm proposed by

Lalgudi et al.
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Circuit classification

General delay model classifies the circuit into two categories

> Begin/end extendible circuit

Property (Path Delay Monotonicity)

Delay of a register-to-register path decreases as the number of
combinational elements on the path is decreased.

» Efficiently solved by extension of algorithm proposed by
Shenoy et al.

» Efficiently solved by extension of incremental algorithm
proposed by Zhou et al.

» Two-way extendible circuit
» Can be solved by ILP based algorithm proposed by Lalgudi et
al.
> Inefficient in terms of performance and memory
» Motivated us to develop iRetILP
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Sequential System Optimization using Retiming

v

Why General Delay Model ?

» Considers prominent physical effects
» More important for lower process nodes

v

Min-period retiming:
» Relocate FFs to minimize clock period.
> lIgnore cost — can increase FF area.
» Lalgudi et al's algorithm solved min-period retiming.

v

Min-area retiming:

> Relocate FFs to minimize FF are under given clock period.

v

Why study Min-period retiming ?
» Min-area retiming needs a clock period.
» Min-period retiming drives Min-area retiming.

v

This paper focusses on Min-period retiming

~
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Circuit Graph Generation

Circuit graph G = (V, E) of n vertices and m edges
» Each vertex v € V can be
> primary input/output port
» input/output port of combinational cell
» Each edge e € V can be
» Combinational edge ¢ with 2 labels

> 5(c) : Minimum load dependent gate delay
» A(c) : Maximum load dependent gate delay

> Interconnect edge i with 4 labels

> d(i) : Interconnect delay without FF

> «(f) : Interconnect delay driving FF input port

> (i) : Interconnect delay driven by FF output port
> w(i) : Number of FFs on interconnect
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Circuit Graph Example

Example of our circuit graph generation

O
’D/@
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Extension of Circuit Graph

Circuit Extension for concise treatment of timing constraints

» Two vertices added : H-IN and H-OUT
» 0 delay edges added from

» Primary outputs to H-IN
» H-OUT to Primary inputs
» H-IN to H-OUT

» One Virtual FF added on H-IN to H-OUT edge
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Example of Extended Circuit Graph

Following figure shows the extended circuit graph
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Retiming Feasibility Constraints

> Retiming is represented by an integer-valued vertex label

r:V -7

r(v) is the # FFs moved from fanout interconnect edges to
fanin interconnect edges of the ports of gate v

gate

R

flipzflop

s CH G

r(3),r(4),r(5)=0 1(3),r(4),r(5) =1

1(3),r(4),r(5) =2

» Number of FFs on edge (i,j) is computed as

Wr(’;./) = W(lv./) + I‘(J) - r(’)

» Retiming feasibility constraints

PO(r) :

wr(i,j) 2 0,V(i,j) € E

w,(i,j) =0,Y(i,j) € C,w,(H-OUT,H-IN) =1
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Timing Constraints in Retiming

» For ease of presentation we focus on setup constraints
» Use label T : V — R* to denote latest arrival time at each
vertex
» Clock period of the circuit is ¢
» Following inequalities model the timing constraints
P1(r,¢) : 3T such that:
T()+AG)<T(),V(i,j) e C
T(0) + d(i, )< T(). (i j) € I A wili,j) = 0
T() +ali, ))<e A TG)<B(,), V(i )) € TAwe(i,j)>1

The clock period of the circuit G after retiming r is given by

o(r) = max{T(i)+ a(i,j) : Y(i,j) € I Nw(i,j)>1}.
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Timing Analysis Algorithm TA

Given an assignment of w, on each edge, TA provides 3 procedures
> get-period :
» Computes critical path e ~ €’
» Returns ¢ as delay of critical path

» get-head-edge : returns ¢’

> get-tail-edge : returns e

Theorem

Given a graph G of n vertices and m edges, the algorithm TA runs
in O(m + n) time.
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Problem Formulation

We formulate the following Setup Retiming problem

Problem (Generalized Setup Retiming)

Given a circuit G = (V, E) and the number of FFs w on the
edges, find a retiming r such that the retiming validity constraints
PO(r) and timing feasibility constraints P1(r,¢) can be satisfied
with the minimum clock period ¢.
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Sub-optimality of Polynomial algorithms
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Polynomial Retiming Algorithm : Step 1
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Sub-optimality of Polynomial algorithms
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Polynomial Retiming Algorithm : Step 2
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Sub-optimality of Polynomial algorithms
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Polynomial Retiming Algorithm : Step 3
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Sub-optimality of Polynomial algorithms
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Sub-optimality of Polynomial Retiming Algorithm
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Traditional Algorithm Preprocessing

We call the algorithm proposed by Lalgudi et al. as Retime-General

v

Extension of Leisserson and Saxe’s Algorithm.

v

Two matrices : W (size n x n) and D (size m x m) used

v

W/(u][v] indicates minimum register count among all paths
between vertices u and v

W(u,v) = min{w(p): u~>p v}

» Given pair of edges e = (&, u), & = (v, V), D(e,&) is computed
as

D(e,&) = max{Q(e,p,&): 0 —eu~>pv—pl,
w(p) = W(u,v)}

Q is longest propagation delay from e to & under minimum
register count constraint

v

Matrix D stores all possible clock periods
21/43



Clock Period Feasibility Theorem

» Matrix D and W is a preprocessing stage for Retime-General
» Given graph G, G, is obtained using retiming transformation r
» For period ¢, conditions that satisfy setup constraints in G,

Theorem (ILP Constraint)

Let G, be a graph with retiming transformation r : V. — Z and c
be a positive real number. c is a feasible clock period for G, if and
only if for every edge u —. v € |, we have

w,(e) >0

and for every edge pair e, € € | such that it —¢ u ~> v —3 V and
D(e,e) > c, we have

Wi (u,v) =0= (w,(e) =0V w, (&) =0)



Traditional Algorithm Overview

Generate a clock period bound ¢, using TA

Linear search to generate period ¢ < ¢,p

Feasibility of c is checked using ILP Constraint Theorem
Clock period updated by TA on the feasible retimed graph G,

Retime-General decreases period until it becomes infeasible

I o

Period larger than the infeasible period is declared optimal.
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ILP Formulation

» We use a modification to PO(r)
PO*(r) = VY(i,j)€ E:0<w(i,j)<1 (1)

» Chuan et al's idea for hold constraint violation
» Practical condition that simplifies ILP formulation
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ILP Formulation

» ILP formulation for feasibility checking

Corollary

Let G, be a graph with retiming transformation r and c be a
positive real number. c is a feasible clock period if for every edge
pair e = (0, u), @ = (v, V) € | such that such that i1 —¢ u ~»

v —a V and D(e,&) > c, we have

we(e) + wr(8) <=1+ Wi (u,v)
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ILP Formulation

» 4 integer variables, Bellman-Ford algorithm can't be used
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Traditional Algorithm Shortcomings

» Too many constraints in ILP formulation as D is dense

» Generating D and W matrix requires all pair shortest path
algorithm

» Generating D and W matrix needs O(n?) and O(m?) memory
» Needs an artificial clock period decrease factor

Proposed Algorithm

iRetILP uses only critical constraints to generate the optimal clock
period, eliminate the need to generate matrix D and W and also
removes the need to employ artificial clock period decrease factor.

» [RetILP solves a number of ILP formulations.
» FEach formulation has few constraints.

» Total runtime is significantly improved.
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Initialization

» We use 6 variables in our algorithm

Optimal clock period ¢* and register vector F* of size m
Intermediate clock period ¢ and register vector F of size m
Critical constraint vector CV initialized to

Retiming label r for each vertex

vV vy VvYyy

» TA is used to generate initial clock period ¢

> F is populated with the current register count w(e)
0<w(e)<1

» r label on each vertex initialized to 0



Iterations

» lterations in iRetlLP are used to either

» Generate optimal period ¢*
» Provide proof that ¢ is optimal

» Each iteration of iRetILP generates a retimed graph G,

» lIdentifies a unique critical constraint, populates to CV
» If the critical period improves present clock period ¢

> Register assignment of G, is updated to F*
> ¢" is updated to present critical period

» Critical constraint at each iteration generated using ILP
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Iterations illustrated

Loop
1. For all e = (u,v) € E: Fle] = w[e] + r[v] - r[u]
2. Invoke TA:

> ¢ = get-period()
» e = get-head-edge(), & = get-tail-edge()
3. Add (e,é) to CV
4. Ifp<@*: ¢*=¢, F*=F
5. Formulate and Solve ILP to generate next r assignments

6. Terminate if ILP is infeasible or there is critical cycle

29 /43



ILP for Unique Constraint Generation

Consider an arbitrary iteration of iRetILP
» r be the retiming transformation associated with this iteration

» Generate an ILP where constraints from CV do not appear as
clock period of G,

» Each entry ¢ € CV has edges e, & associated with it
» Retiming associated with constraint ¢ be r.

Wrc(e)7 Wrc(é) = 1
» For retiming r, critical path e ~~ & is equivalent to

w (0, u) =1Aw(v,?)=1= W,(u,v)=0
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ILP for Unique Constraint Generation (contd.)

» Lemma to be satisfied so that e ~~ & does not exist in G,

Lemma (G, ILP formulation)

Formation of G, used the following integer linear constraints
for every edge e € I, @ € C, we have

0<wl(e)<1l,w(&)=0
for every 2-tuple { (e, &), wy, } € CV

we(e) + wr(8) <= wyy, +1
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ILP for Unique Constraint Generation (contd.)

» How to generate w,, for each constraint c € CV ?
> w,, is equivalent to W(u,v) + rc(v) - re(u)
» Traditional algorithm had W matrix, we do not have
» We have a property, when ¢ was critical, W, (u,v) =0

W(u,v) = rc(u) — re(v)
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Correctness and Termination

Theorem for algorithm correctness

Theorem (Critical Constraints)

Each iteration of our algorithm finds a entry from D matrix which
is one of the timing feasibility constraint for the ILP formulation
used by Retime-General with ¢ as the optimal clock period ¢*.

Invariants used in our iterations

Theorem (Loop Invariant)

Loop invariant of iRetILP is that the integer linear program
generated by Lemma 1 is either feasible or there are no critical
cycle in the graph G,.
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Complexity Analysis

Let size of CV be k upon termination.
Let size of CV be s; at i'th iteration

Let complexity of solving ILP = 7 - s; (Linear function)

vV v v VY

iRetlLP’'s runtime T is dominated by ILP solver's runtime

K
T:Zﬁ'si
i=0

T = O(k?) : quadratic function of total critical constraints

v

» Peak memory consumption M = O(k)

> iRetlLP generates significantly lesser constraints than
Retime-General
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Experimental Setup

vV vy VvV Yy

Random delay parameter generation
Floyd-Warshall to generate D,W matrix for Retime-General

ILP solved using CPLEX C+4+ API level integration
Divided ISCAS benchmarks into two sets, small and big

» Small benchmarks vertex count: 1K
» Big benchmarks vertex count: 52K

Running Retime-General till infeasibility is slow
» Mentioned in Lalgudi et al's work, they run 34 vertices
> 5298 (368 vertices) didn't terminate in 6 hours
> iRetlLP on s298 terminated in 91.12 secs

iRetILP is used to generate optimal period

» Retime-General is terminated at optimal period
» Comparisons exclude infeasibility proof runtime
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Performance Comparison : Small Benchmarks

» Blue bar : Constraint solving speedup
» Red bar : Total speedup (includes Floyd-Warshall runtime)

Speedup @ Constraint Soking
m Total

in
[=]

Speedup {Log Scale)

o
=1

o
i
o

0.00 -
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P TP I Py S P

Benchmarks
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Memory Comparison : Small Benchmarks

Peak Memory consumption of selected benchmarks
» Larger than 200 critical constraints
» Blue bar indicates Retime-General
» Red bar indicates iRetILP

Memory Comparison
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mMemory(T)
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iRetILP incremental run : Large Benchmarks

Incremental mode iRetlLP runs on ISCAS89 Large benchmark
» R100: Time taken for 100 iterations
» R200: Time taken for 200 iterations

Runtime scaling in incremental runs

Runtime Scaling

I
n

R200/R100
o - ) w
(= T S Y

5953 51424 58234 592341 515880 5188501 36417 38504
Benchmarks

—— R200/R100
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Clock period improvement

iRetILP is run in incremental mode, initial clock period ¢;n:
> (100 : Optimized period after 100 iterations
> o0 : Optimized period after 200 iterations

» Period decrease

(PD) computed as

(200 — ¢100)

PD =
Dinit

Period decrease over incremental runs

- 100

Period Improvement over iterations

N

&)

- M

=}

O = ) s e

Period Decrease Percentage
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Benchmarks

@ Period Decrease
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Conclusions and Future work

» Efficient incremental min-period retiming algorithm

» On an average 100X faster than Retime-General
» Upto 40X less peak memory consumption than Retime-General
» Infeasibility proof should be avoided for practical usage

41/43



Conclusions and Future work

» For bigger benchmarks, incremental algorithm can be stopped
any time, generating a feasible upper bound of optimal clock
period
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Conclusions and Future work

» Minimum area retiming for general delay models

» Optimization version of the same problem
» Experimenting with extended iRetILP for min-area retiming
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Conclusions and Future work

» Open questions ?
» Complexity class of 4 variable ILP formulation
» Can we generate a polynomial time algorithm 7
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Q& A



Thank you!
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