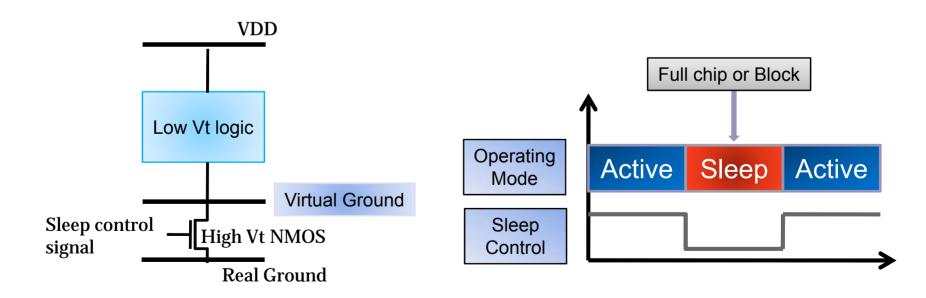
Technique for Controlling Power-Mode Transition Noise in Distributed Sleep Transistor Network

> Yongho Lee, and Taewhan Kim Seoul National University



- Introduction
- Related Work
- Motivation example
- The proposed algorithm
- Experimental results
- Conclusion

Power Gating on Circuits

Basic idea

OReduce the leakage power by inserting power gating cell(s) into the power or ground nets

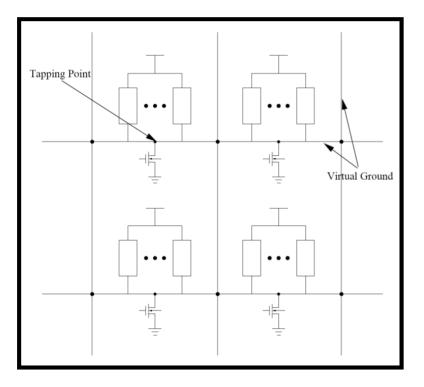
Design Issues in Power Gated Logic Circuit

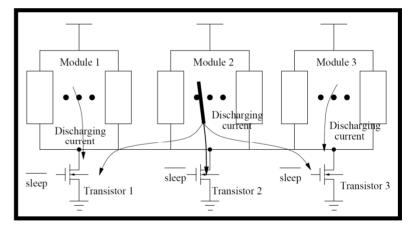
Active mode

○ IR drop between source and drain node of sleep transistor

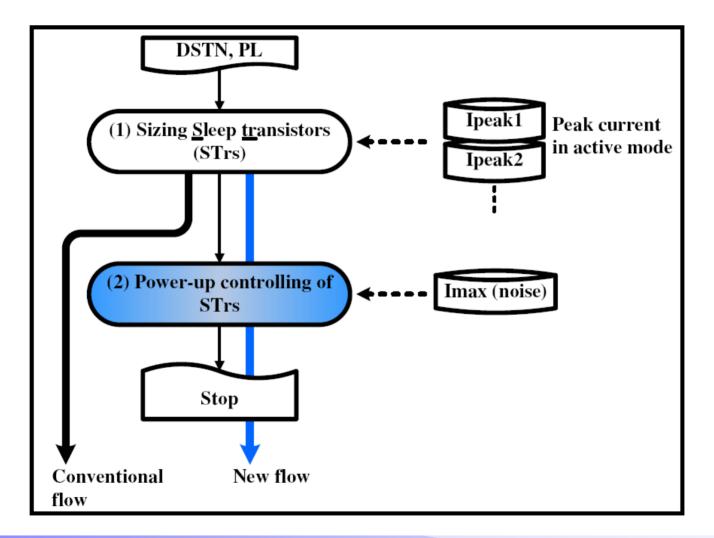
○ Sleep transistor overhead

Sleep mode
 State retention FFs

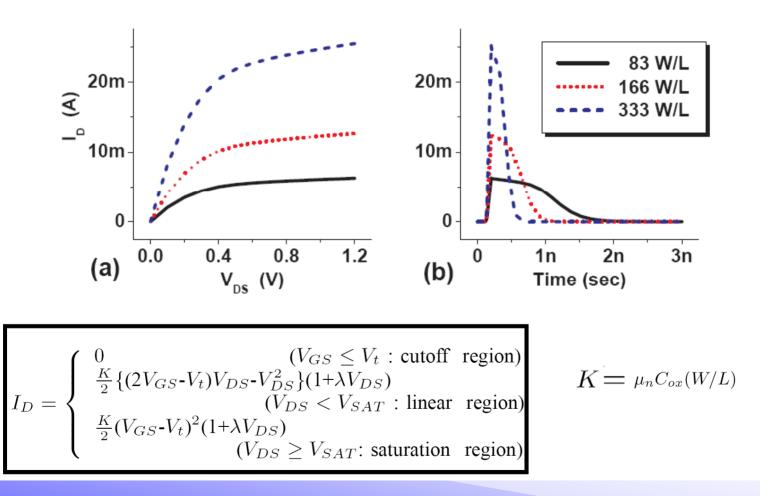

Mode transition


- O Wakeup delay
- Huge discharging current
 - Accumulated charges in '0' state nodes and virtual ground rail
 - Short circuit current

Related work


- Sleep transistor design
 - Module based [5]— centralized sleep transistor design
 - Large interconnect resistance of virtual ground
 - O Cluster based [6]
 - Design overhead
 - O Distributed sleep transistor network: DSTN [7]
 - Current balancing effect, PVT tolerance
- Sleep transistor sizing
 - O Based on MSSC & PL [8]
 - Average current method [11]
 - Path based switching current method [12]
- Mode transition noise
 - O Wakeup order scheduling of power gated blocks in system level [13]
 - Incremental turn-on scheme; gradually or sequentially [3]
 - Logic cell clustering method [14]

DSTN: distributed sleep transistor network



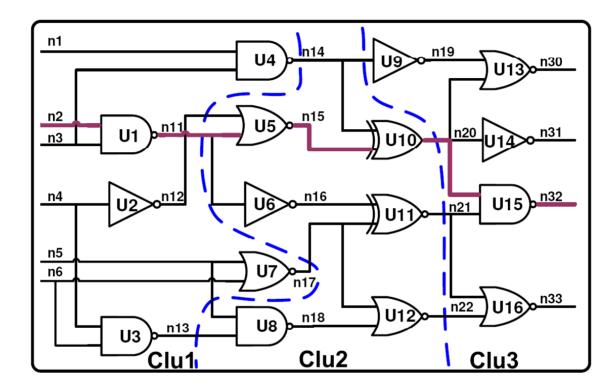
Design flow of power gated circuits

Motivation example

Characteristics of sleep transistors

Sleep transistor sizing

$$\left(\frac{W}{L}\right)_{STr, \ total} = \frac{I_{STr, \ total}(t)}{\delta\mu_n C_{ox}(V_{DD} - V_{tl})(V_{DD} - V_{th})}$$
$$I_{STr, \ total}(t) = \sum_{i \in gates} I_{STr, \ i}(t)$$

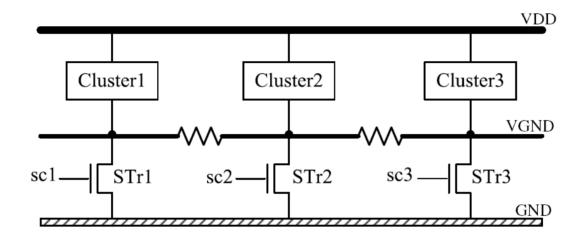

$$I_{STr, total}(t) \leq I_{MSSC}$$

* Source: M. Anis, et al., DAC 2002

Motivation example

Relation between:

Sleep transistor size and switching current



	Original circuit	Power gated circuit			
	Switching current [mA]	Size [W/L]	Delay increase[%]		
CASE1	1.98	75	2.3		
CASE2	0.78	29	4.5		

$$\left(\frac{W}{L}\right)_{STr, \ total} = \frac{I_{STr, \ total}(t)}{\delta\mu_n C_{ox}(V_{DD} - V_{tl})(V_{DD} - V_{th})}$$
$$I_{STr, \ total}(t) = \sum_{i \in gates} I_{STr, \ i}(t)$$
$$I_{STr, \ total}(t) \le I_{MSSC}$$

Relation between:

Power mode trans. noise & sleep transistor size

Combinations of STr to be turned on	Peak value [mA]			
	Case1	Case2		
STR1 + STR2 + STR3	4.73	2.30		
STR1 + STR2	3.83	1.64		
STR1	1.96	0.79		
STR2	2.19	0.89		
STR3	1.79	0.72		

Power-up controlling of sleep transistors

Sleep transistor location	Delay [ns]	Ratio		
Locl ¹	4.17	1		
$Loc2^2$	3.96	0.95		
Loc3 ³	3.84	0.92		

S0	S1	S2					S7	S8	S 9
S10	S11	S12						S17	
					S35				
			S43	S44	S45	S46	S47	S48	
			S53	S54	855	S56	S57	S58	
			S63	S64	S65	S66	S67	S68	
			S73	S74	S75	S76	S77	S78	
							S97	S98	S99
	Loc1		Loc2		Loc3				

Unate Covering Problem (UCP)

- Method for the two level logic optimization
 Given a Boolean function f, find a minimum SOP formula
- Let M_{mxn} be a Boolean matrix, the UCP is to find a minimum number of columns to cover M in the sense that any row with a 1-entry has at least one of its 1entries covered by these columns.

UCP example

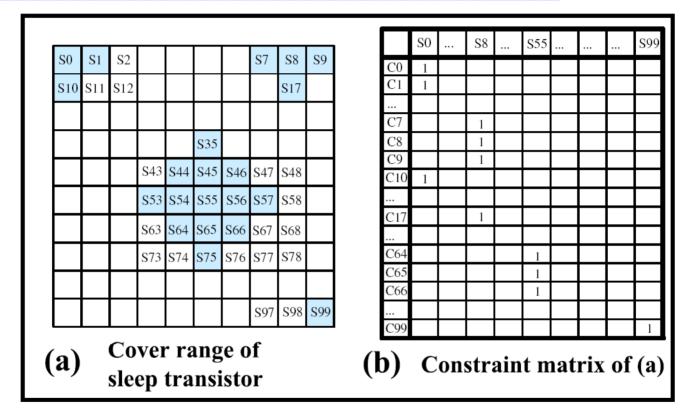
f(w, x, y, z) = x'y' + wxy + x'yz' + wy'z

	wxy	wxz	wyz'	wy'z	x'y'	x'z'
wx'y'z'					1	1
w'x'y'z					1	
w'x'y'z'					1	1
wxyz	1	1				
wxyz'	1		1			
wx'yz'			1			1
w'x'yz'						1
wxy'z		1		1		
wx'y'z				1	1	

UCP example

f(w, x, y, z) = x'y' + wxy + x'yz' + wy'z

	wxy	wxz	wyz'	wy'z	x'y'	x'z'	
wx'y'z'					1	1	
w'x'y'z					1		
w'x'y'z'					1	1	
wxyz	1	1					
wxyz'	1		1				_ Solutions to UCP :
wx'yz'			1			1	$\{x'y', x'z', wxy, wxz\}$
w'x'yz'						1	
wxy'z		1		1			
wx'y'z				1	1		


UCP example

f(w, x, y, z) = x'y' + wxy + x'yz' + wy'z

	wxy	wxz	wyz'	wy'z	x'y'	x ' z '	
wx'y'z'					1	1	
w'x'y'z							
w'x'y'z'					1	1	
wxyz	1	1					
wxyz'	1		1				
wx'yz'							
w'x'yz'						1	
wxy'z		1		1			
wx y z				1			

Solutions to UCP: {x'y', x'z', wxy, wxz}

UCP formulation

UCP solution d_i ; a disjoint subset of sleep transistors

$$D = \{ d_1, d_2, ... \}$$

$$T = \{ t_1, t_2, ... \}$$

Schedule T, $t_1 \le t_2 \le ..., I_T \le I_{max}$

Experimental setup

- Implemented the proposed algorithm in C++
- Tested on a set of ISCAS benchmark circuits
- Decomposed with INV, NAND2, NOR2, XOR2, XNOR2
- Simulated with 130nm standard cell library
- Controlled input vectors using SAT formulation

Experimental Results:

Sleep transistor sizing

• PL: 5%

Circuit	#PI	#gate	LONG [7] [W/L]	STSizing [W/L]	Ratio
с432	36	176	353.58	120.17	33.99
с880	60	332	536.58	278.14	51.84
с1355	41	201	347.42	164.11	47.24
C1908	33	244	373.92	112.84	30.18
с2670	233	455	600.25	398.78	66.44
с3540	50	996	883.83	378.11	42.78
с5315	178	1,295	1,878.33	1,060.00	56.43
с7552	207	1,219	1,593.83	1,048.65	65.79
Avg.					49.34

Experimental Results:

Power-mode transition noise controlling

		LONG [7]							
		CONV			SEQ	STC			
circuit	circuit $I_{max} [mA] (W/L)$		$T_{wakeup}(ns)$	I [mA]	$T_{wakeup}(ns)$	I [mA]	$T_{wakeup}(ns)$		
с432	10 (116)	28.39	1.54	9.75	2.24	9.71	1.72		
C880	14 (165)	43.77	1.78	13.08	2.89	13.96	2.07		
C1355	9 (105)	28.43	1.10	8.99	2.60	8.94	1.45		
C1908	10 (116)	30.74	1.07	8.90	2.56	9.91	1.56		
C2670	15 (175)	49.71	1.98	14.12	3.41	14.43	2.37		
с3540	20 (232)	74.74	2.72	19.93	5.79	19.95	3.61		
с5315	40 (457)	154.41	1.90	39.95	3.94	39.91	2.46		
с7552	34 (417)	132.08	2.71	33.04	5.10	33.74	3.39		

			STSizing (Section V)					
		CONV			SEQ	STC		
circuit	$I_{max} [mA] (W/L)$	I [mA]	$T_{wakeup}(ns)$	I [mA]	$T_{wakeup}(ns)$	I [mA]	$T_{wakeup}(ns)$	
С432	10 (116)	9.04	2.03	9.04	2.03	9.04	2.03	
C880	14 (165)	23.53	1.99	13.28	3.86	13.98	2.15	
C1355	9 (105)	13.96	1.29	8.52	3.04	8.75	1.49	
C1908	10 (116)	9.91	1.74	9.91	1.74	9.91	1.74	
C2670	15 (175)	33.62	2.05	14.97	4.03	14.92	2.41	
с3540	20 (232)	33.90	3.22	19.93	7.17	19.97	3.62	
с5315	40 (457)	89.42	2.13	37.22	5.24	39.51	2.58	
с7552	34 (417)	88.59	2.89	31.40	5.43	33.63	3.46	

Conclusion

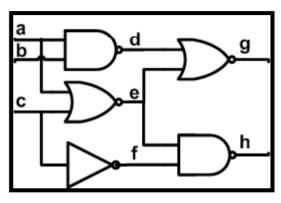
- Mode transition noise should be limited for a reliable system
- Peak value of discharging current depends on sleep transistor size
- Sleep transistor size can be reduced by using worst delay path aware approach
- Reduced sleep transistor size reduces the peak value of discharging current
- To meet the constraint of mode transition noise, clustering method of sleep transistors is proposed using UCP formulation

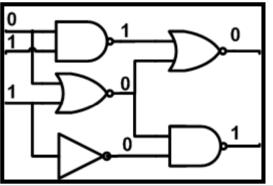
Thank you

Input Vector Formulation

The quantity to be minimized

$$Q = \sum_{n_i \in gates} \# fanout(n_i) \cdot VDD \cdot \gamma(n_i)$$


 SAT formulation with Pseduo Boolean expression


$$\bigcirc c_1 l_1 + c_2 l_2 + ... ≤ T$$

I_i is literal of Boolean decision variables of SAT solver

CNF expression

```
(a+d)•(b+d)•(ā+b+d)•
(ā+ē)•(c+ē)•(a+c+e)•
(c+f)•(c+f)•
(d+g)•(e+g)•(d+e+g)•
(e+h)•(f+h)•(ē+f+h) = 1
```


Cost function

 $Min \{ d + 2e + f + g + h \}$

Solution:

Input vector : a = 0, b = 1, c = 1 # of 1 : 2