Manifold Construction and Parameterization for Nonlinear Manifold-Based Model Reduction

Chenjie Gu and Jaijeet Roychowdhury {gcj,jr}@eecs.berkeley.edu

University of California, Berkeley

Outline

Background

- Introduction to MOR and maniMOR
- Manifold construction and parameterization

Manifold construction using integral curves

- DC manifold and the normalized integral curve equation
- Ideal and almost-ideal manifold
- Algorithm

Experimental results

Conclusion

Background

Model Order Reduction

Low-order Linear Subspace

Low-order Nonlinear Manifold

Key Steps in ManiMOR

- <u>"Find" the nonlinear manifold</u>
 - Capture important dynamics
- <u>"Parameterize" the manifold</u>
 - Build up the coordinate system

Manifold and Its Parameterization

$$\begin{cases} x = \cos(t) \\ y = \sin(t) \\ z = t \end{cases}$$

Manifold and Its Parameterization

- 1. Identify the manifold that capture important dynamics
- 2. Compute and store pairs of $\{x, T_xM\}/\{z, T_zM\}$

DC Manifold

DC operating points constitute a DC manifold.

How to **<u>compute</u>** and **<u>parameterize</u>** the DC manifold?

ASPDAC 2010

DC Manifold

 $f(\vec{x}) + B\vec{u}(t) = 0$

A straight-forward solution:

Computation: Perform DC sweep analysis

<u>Parameterization</u>: Define z coordinates using values of u

Problems:

Hard to choose step size in DC sweep analysis Not generalizable to higher dimensions

Introduction to Integral Curve

Given a vector field v(x) , its integral curve is the curve $\gamma\equiv x(t)$ such that $\frac{dx}{dt}=v(x)$

DC Manifold as an Integral Curve

Need to derive the relationship between dx and du

$$f(\vec{x}) + B\vec{u}(t) = 0$$

$$\frac{\partial f}{\partial x} \frac{dx}{du} + B = 0$$

$$\frac{dx}{du} = -[G(x)]^{-1}B$$
The first Krylov basis.
Initial condition: $x(u = 0) = x_{DC}|_{u=0}$

Solutions are DC operating points.

Any numerical integration / transient analysis code can be applied.

Parameterization using Euclidean Distance

Parameterization using Euclidean Distance

Parameterization using Euclidean Distance

Does it define the same integral curve?

Validation

Normalized Integral Curve Equation

Theorem:

Suppose $t = \sigma(\tau)$; x(t) and $\hat{x}(\tau)$ satisfy

$$\frac{d}{dt}x(t) = g(x(t)) \text{ and } \frac{d}{d\tau}\hat{x}(\tau) = \sigma'(\tau)g(\hat{x}(\tau)) \text{ , respectively.}$$

Then x(t) and $\hat{x}(\tau)$ span the same state space.

Sketch of proof:

Since
$$t=\sigma(\tau)$$
 , we have $dt=\sigma'(\tau)d\tau$. Define $\hat{x}(\tau)\equiv x(t)=\hat{x}(\sigma(t))$, then

$$\frac{d}{d\tau}\hat{x}(\tau) = \frac{d\hat{x}(\tau)}{dt}\frac{dt}{d\tau} = \sigma'(\tau)g(x(t)) = \sigma'(\tau)g(\hat{x}(\tau))$$

Normalized Integral Curve Equation

$$\frac{dx}{du} = \frac{[G(x)]^{-1}B}{||[G(x)]^{-1}B||_2}$$

Solution: x(u)

Solution: $\hat{x}(\hat{u})$

Define
$$u = \sigma(\hat{u}) = \int_0^{\hat{u}} \frac{1}{||[G(\hat{x}(\mu))]^{-1}B||_2} d\mu$$

From the theorem, x(u) and $\hat{x}(\hat{u})$ define the same integral curve.

Normalized Integral Curve Equation

Directly available from Krylov subspace methods.

Generalizable to higher dimensions.

Ideal Nonlinear Manifold

 $V(x) = [v_1(x), \dots, v_q(x)]$ is the projection matrix for the reduced linearized system (at x).

For example, Arnoldi algorithm generates a basis for $\mathcal{K}_q([G(x)]^{-1}, B) = \{[G(x)]^{-1}B, [G(x)]^{-2}B, \cdots, [G(x)]^{-q}B\}$

However, this set of PDEs is over-determined.

Almost-Ideal Manifold Construction

Almost-Ideal Manifold Construction

Algorithm 1 Manifold Construction by Finding Integral Curves

- 1: Given the region to be parameterized $(z_{i,min}, z_{i,max}), i \in [1,q];$
- 2: Let $x_0(0, \dots, 0) = x_{DC}$, where x_{DC} is the DC solution when u = 0;

3:
$$X \leftarrow \{x_0\}, Z \leftarrow (0, \cdots, 0);$$

- 4: **for** i = 1 to q **do**
- 5: for all $x \in X$ do
- 6: Integrate the integral curve equation

$$\frac{\partial x}{\partial z_i} = v_i(x)$$

with initial condition x;

7:
$$X \leftarrow \{x(z)\}, Z \leftarrow z;$$

- 8: end for
- 9: end for
- 10: Output X as the set of points on the manifold;
- 11: Output Z as the parameterization of the manifold for each point $x \in X$.

Experimental Results

A Hand-Calculable Example

$$\begin{aligned} &\frac{d}{dt}x_1 = -x_1 + x_2 - u(t) \\ &\frac{d}{dt}x_2 = x_1^2 - x_2 \end{aligned}$$

$$f(x) = \begin{bmatrix} -x_1 + x_2 \\ x_1^2 - x_2 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$G(x) = \begin{bmatrix} -1 & 1 \\ 2x_1 & -1 \end{bmatrix}, \quad [G(x)]^{-1} = \frac{1}{2x_1 - 1} \begin{bmatrix} 1 & 1 \\ 2x_1 & 1 \end{bmatrix}$$

DC and AC Manifold

$$[G(x)]^{-1} = \frac{1}{2x_1 - 1} \begin{bmatrix} 1 & 1 \\ 2x_1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
$$w_1(x) = [G(x)]^{-1}B = \frac{1}{2x_1 - 1} \begin{bmatrix} 1 \\ 2x_1 \end{bmatrix}$$
$$w_2(x) = [G(x)]^{-2}B = \frac{1}{(2x_1 - 1)^2} \begin{bmatrix} -1 - 2x_1 \\ -4x_1 \end{bmatrix}$$

DC manifold:
$$\frac{\partial x}{\partial z_1} = v_1(x) = \frac{w_1(x)}{||w_1(x)||_2}$$

AC manifold: $\frac{\partial x}{\partial z_1} = v_2(x) = \frac{w_2 - \langle w_2, v_1 \rangle v_1}{||w_2 - \langle w_2, v_1 \rangle v_1||_2}$

DC and AC Manifold

Application to MOR

 Trajectory of the full system stays close to the manifold

Conclusion

Presented a manifold construction and parameterization procedure

- Based on computing integral curves
- Preserves local distance
- Captures important system responses
 - Such as DC and AC responses

Application to manifold-based MOR

Validated against several examples