Constrained Global Scheduling of Streaming Applications on MPSoCs

Jun Zhu, Ingo Sander, and Axel Jantsch

{junz, ingo, axel}@kth.se

Royal Institute of Technology (KTH), Stockholm, Sweden

ASP-DAC '10. January 20, 2010

2 / 18

Synchronous data flow (SDF) preliminaries

Figure: An example streaming application in SDF model.

- Process, channel, FIFO, and the "synchronous" name
- Computation $T = [t_{C,i}, t_{C,j}, t_{C,k}]$ and storage $\Gamma = [\gamma_{i,j}, \gamma_{j,k}]$
- Consistency, e.g., $r_i \cdot n_{i,j} = r_j \cdot m_{i,j}$ in $ch_{i,j}$; avoid auto-concurrency

(Motivation)

Architecture model

Figure: A 3×3 regular 2-D mesh MPSoC architecture.

- Each tile consists of a processor (μp), an application memory, a token buffer, and a network interface (NI).
- Hard real-time NoC infrastructure: switches (s) and links.

Problem statement: the analysis of routing, scheduling, and buffer properties, based a **fixed** allocation from processes to tiles.

Motivation - differnt scheduling schemes

(0) Application allocated onto buffer constrained dual-processor.

OH in TDM-like schemes causes sub-optimal: throughput vs. buffer
 Contributions: compu. & comm. global scheduling for MPSoCs

- **2** Constraint based Analysis
- **3** Experimental Results

Related Work

- Heuristic scheduling of task graphes on distributed systems with comm. protocols optimization [Eles et al., TVLSI '00];
- For SDF models, to construct heuristic periodic admissible parallel schedules (PAPS) on multi-processors [Lee and Messerschmitt, 1987a], without constraints on buffers and throughput.
- Stuijk et al. [DAC '07] propose a mapping and TDMA/list scheduling design flow for throughput constrained SDF applications on MPSoCs, which is argued about the OH and lacking of global optimization on performance metrics.
- Inspiring work: model-checker determines the minimal deadlock-free buffer of SDF models (no computation constraints) [Geilen et al., DAC '05]; Liu et al. [RTSS '08] use SAT-solver to explore the mapping and scheduling of homogeneous SDF (HSDF) models on multi-processors to maximize application throughput.

Motivation

Constraint based Analysis

Conclusion

Event Models [Zhu et al., DATE '09]

Cumulative functions [Cruz1995]:

Outline

Arrival function $R_{i,j}(t) = \sum_{i=1}^{t} s_1$ Service function $C_{i,j}(t) = \sum_{i=1}^{t} s_2$ Output function $R_{i,j}^{\prime}(t) = R_{i,j}(t)$ Demand function

$$D_{i,j}(t) = \left\{ egin{array}{c} \sum_{0}^{t} s_1 + n_{i,j}, \ p_i \ computing \ \sum_{0}^{t} s_1, \ p_i \ stalling \end{array}
ight.$$

Buffer Properties: Buffer backlog $B_{i,j}(t)$ Buffer requirement $B'_{i,i}(t)$

J. Zhu, I. Sander, and A. Jantsch.

Buffer minimization of real-time streaming applications scheduling on hybrid CPU/FPGA architectures. DATE '09.

Constraint based analysis

Our declarative scheduling method considers

- Execution semantics of SDF models [Zhu et al., DATE '09]: e.g., static token rates, asynchronous buffer
- Resource constraints: binding applications onto target MPSoC platforms
 - application to architecture mapping (be aware)
 - computation scheduling
 - communication routing and flow control
 - performance metrics, e.g., buffer cost and real-time constraints

Mapping

Mapping decision $\alpha_{i,\mu p_n}$: denotes the presence of p_i on μp_n

Constraint (Single residence)

$$\sum_{p_n \in \mathbf{U}} \alpha_{i,\mu p_n} = 1, \quad \forall p_i \in \mathbf{P}$$
(1)

Although mapping is fixed, scheduling needs to be mapping-decision aware

Constraint (Mapping & scheduling association)

Sequential execution of processes on each processor, and the mapping and scheduling association:

$$\sum_{p_i \in \mathbf{P}} \alpha_{i,\mu p_n} W_j(t) \in \{0,1\}, \ \forall \mu p_n \in \mathbf{U}, t \in \mathbb{N}_0$$
(2)

in which $W_j(t)$ denotes the 1-0 (computing) status of p_j .

$$W_j(t) = \max(L_j(t), L_j(t + \Delta_t)), \quad \forall \Delta_t \in [1, t_{C,j}]$$
(3)

$$L_j(t+1) = rac{C_j(t+1) - C_j(t)}{m_{i,j}} \in \{0,1\}$$

Constrained Global Scheduling of Streaming Applications on MPSoCs

9 / 18

Figure: A template of producer-consumer refinement. $\omega_{i,j}$ (correlated with α) denotes whether $ch_{i,j}$ is as intra-processor channel.

Some constaints on FIFOs can be formalized, e.g.,

Property (Buffer usage)

The FIFO usages of FIFO_{*i*, δ} at time tag t is denoted as B_{*i*, δ (t):}

$$B_{i,\delta}(t) = D_{i,\delta}(t) - \neg \omega_{i,j}(C_{i,\delta}(t) - B_{i,\delta}^{0}) - \omega_{i,j}(C_{i,j}(t) - B_{i,j}^{0})$$

in which $B_{i,\delta}^0(t)$ is the initial data tokens.

Constrained Global Scheduling of Streaming Applications on MPSoCs

(4)

Template based Buffering Analysis - 2

Different FIFOs on the same tile can be implemented as either disjoint or shared buffer partitions.

Property (Buffer cost $\gamma_{Sum'}$ – disjoint partition)

$$\gamma_{Sum'} = \sum_{i \ i \ \delta} (\omega_{i,j} \gamma_{i,j} + \neg \omega_{i,j} (\gamma_{i,\delta} + \gamma_{\delta,j})), \ \forall p_i, p_j \in \mathbf{P}$$
(5)

where $\gamma_{i,j} \ge B_{i,j}(t), \gamma_{i,\delta} \ge B_{i,\delta}(t), \gamma_{\delta,j} \ge B_{\delta,j}(t), \forall t \in \mathbb{N}_0$

in which $\gamma_{i,j}$, $\gamma_{i,\delta}$, and $\gamma_{\delta,j}$ denote the sizes of FIFOs in the template.

Property (Buffer cost $\gamma_{Sum''}$ – shared partition) $\gamma_{Sum''}$ is the sum of the shared buffer space on individual tiles.

$$\gamma_{Sum''} = \sum_{n} \gamma_{tile_n} \tag{6}$$

where
$$\gamma_{tile,n} \ge \sum_{i,j} (a_{i,\mu p_n} B_{i,\delta}(t) + a_{j,\mu p_n} B_{\delta,j}(t) + a_{i,\mu p_n} \omega_{i,j} B_{i,j}(t))$$

The total buffer cost $\gamma_{Sum'} \ge \gamma_{Sum''}$.

Routing and flow control - 1

Figure: Three phases to route a packet in inter-tile channel $ch_{i,j}$.

- Assuming deterministic X-Y routing on NoC, routing decisions are in β^r and β^c on rows and columns with conresponding constraints.
- In hard-real time NoC (contention-free), a packet (data token) reserves a circuit switching before the transmission finishes, e.g., in Æthereal [Goossens et al., '05 IEEE Des. Test].

Routing and flow control - 2

• Different application flows sharing the same NoC links are scheduled temporally to avoid contention in: packet injection (see Eq. 7), ejection, and inter-tile traffic flow (for rows of links see Eq. 8)

Constraint (Contention-free traffic flow scheduling)

$$\sum_{i} \alpha_{i,\mu\rho_n} W_{\delta}(t) \in \{0,1\}, \quad (7)$$

$$\sum_{i,j} \beta_{ch_{i,j},l_k}^{r} W_{\delta}(t) \in \{0,\pm1\}, \sum_{i,j} |\beta_{ch_{i,j},l_k}^{r}| W_{\delta}(t) \in \{0,1,2\}, \quad (8)$$

$$\forall p_i, p_j \in \mathbf{P}, \mu p_n \in \mathbf{U}, t \in \mathbb{N}_0$$

with $W_{\delta}(t)$ to denote the data transmission **1-0** (working or idle) status on NoC modeled by p_{δ} .

Real-time constraints

The efficient execution means the streaming services are delivered on-demand to the end-user, neither too fast nor too slow.

Constraint

Outline

(Application output throughput) After some start-up time period τ_0 ($\tau_0 > 0$) with no stable output tokens, a specified output throughput ρ_{out} should be sustained at the application sink process p_j .

$$C_j(\tau_0 + k \cdot L_{period}) - C_j(\tau_0) = k \cdot J \cdot r_j \cdot m_{i,j}, \ \forall k \in \mathbb{N}_0$$
(9)

Empirically, $L_{period} = \lceil \frac{J \cdot r_k \cdot m_{i,j}}{\rho_{out}} \rceil, J \in \mathbb{N} \setminus \{\infty\}$, in which J is incremental and leads to an valid L_{period} .

Furthermore, throughput is guaranteed by periodic phase checking.

Constraint programming techniques

- CP (Gecode) has been successful to solve NP-complete problems.
- Problems are defined by: variables, domains, and constraints.
- Some efficient modeling techniques in solutions finding:
 - Redundant variables and constraints. E.g., redundant mapping decision variables.
 - Domain and constraints reduction. E.g., lower bounds for FIFOs, constraints are checked in t ∈ [0, τ₀ + L_{period}] once periodic phase happens.
 - **Branching and exploration.** To construct the search tree, the branching variables are prioritized as follows: $\gamma_{Sum'}$ ($\gamma_{Sum''}$), γ_{tile_n} , and *C*. Empirically, the exploration starts with minimal values for all variables

Experimental Results - 1

Table: Comparison of scenarios with varying OH. $(3 \times 3 \text{ platform})$.

specification				SCP-OI	- l a	SCP		
app.	# ^b	thru. req.	J	$\gamma_{Sum'}(\gamma_{Sum''})$	time ^c	$\gamma_{Sum'}(\gamma_{Sum''})$	time ^c	
Modem	2 2	3.125e-2 1.667e-2	1 1	_ d 98(46)	352 5.0e3	98(45) 92(41)	3.0e3 1.4e3	
Wireless	2 2	2.5e-2 1.7e-2	1 1	123(49)	422 6.4e5	121(53) 120(48)	4.7e4 1.2e3	

^a 50% OH in computation latency, plus 100% OH in communication latency. ^b The number of application instances mapped onto platform.

^c The solutions finding time (*ms*), branched and explored with $\gamma_{Sum'}$ and γ .

^d The problem is infeasible.

Experimental Results - 2

Table: Comparison of scheduling methods $(2 \times 2 \text{ platform})$.

specification				PAPS		SCP			
app.	#	thru. req.	J	$\gamma_{Sum'}(\gamma_{Sum''})$	time	J	$\gamma_{Sum'}(\gamma_{Sum''})$	time'(time") ^a	
Bipartite	1 1 1	1.101e-1 1.096e-1 1.082e-1	3 2 1	510(510) 352(352) 194(194)	120 50 20	3 1 1	36(31) 36(31) 36(28)	2.6e3(2.3e5) 1.8e3(1.4e5) 1.9e3(2.1e5)	
Cd2dat	2 2 2	2.462e-1 1.553e-1 1.550e-1	- 2 1		- 430 120	1 1 1	68(34) 66(34) 66(34)	1.9e3(4.7e4) 1.8e3(3.3e5) 1.9e3(3.3e5)	
H263	2 2 2	2.103e-4 2.102e-4 2.101e-4	- 2 1	19016(19012) 9512(9508)	- 2.0e5 2.4e4	1 1 1	9512(9506) 9512(9506) 9512(9506)	9.7e3(2.3e5) 9.5e3(2.3e5) 9.2e3(2.1e5)	

^a The solutions finding time (*ms*) branched and explored with two buffer measurements.

Conclusions & future work

Conclusions:

Outline

- We present a constraint based global scheduling framework for SDF streaming application on NoC based MPSoCs.
- 2 The global scheduling for both processors computing and communication flow control has been achieved.
- It shows higher predictable application throughput and with minimized buffer cost.

Future work:

- Caused by the complexity of scheduling, we plan to combine heuristics with our constraint based techniques, e.g., using heuristics to explore the search tree.
- **2** To explore parallel search with multiple threads in *Gecode* on multi-core workstations.

Thanks for your attention!

Questions?