Improved On-Chip Analytical Power and Area Modeling

Andrew B. Kahng Bill Lin **Kambiz Samadi** (http://vlsicad.ucsd.edu)

University of California, San Diego

January 20, 2010

Outline

- Motivation
- Implementation Flow and Scope of Study
- Modeling Methodology
 - Modeling Problem
 - Power Modeling
 - Area Modeling
- Experimental Results and Discussion
- Conclusions

Motivation

- NoCs needed to interconnect many-core chips
- Performance was the primary concern
- Power efficiency is now critical
 - 28% of total power in Intel 80-core Teraflops chip is due to interconnection networks (routers + links);
 - → Need rapid power estimation to trade off alternative architectures

Related Work

- Real-chip power measurements (Isci et al. '03)
- RTL-level NoC power estimations (A. Banerjee et al. '07 and N. Banerjee et al. '04)
 - Simulation time is slow
 - Requires detailed RTL
- Architectural-level power estimation
 - Interconnection network (Patel et al. '97); model is not instantiated with architectural parameters → not suitable to explore tradeoffs in router microarchitecture
 - Uniprocessor power modeling (Wattch: Brooks et al. '00 and SimplePower: Ye et al. '00)
- ORION models
 - Recently enhanced (i.e., ORION 2.0)
 - Early-stage design space exploration

Gap #1: Models Tied to µArchitecture / Implementation

- Developed from a mix of template architectures / circuit implementations (cf. ORION 2.0)
 - Not accurate within an architecture-specific CAD flow
 - Useful for early-stage estimations (e.g., complementary to our approach)
- Power and area estimations via parametric regression (Meloni et al. '07)
 - Regression process assumes certain functional forms → depends on the underlying architecture / circuit implementation
 - Does not consider implementation parameters (e.g., aspect ratio, etc.)

Reduced accuracy \rightarrow not suitable for efficient design space exploration

Gap #2: Models Overlook µArchitecture Details

- Parametric cycle-accurate traffic driven power models, without consideration of microarchitectural parameters (cf. NOCEE)
- Power model with limited dependency on microarchitectural parameters; derived from synthesis results

Reduced applicability to energy design space explorations

 Goal: Develop a modeling framework that: (1) is architecture-independent, (2) considers all the relevant microarchitectural details

Improved NoC Router Power-Area Models

Outline

- Motivation
- Implementation Flow and Scope of Study
- Modeling Methodology
 - Modeling Problem
 - Power Modeling
 - Area Modeling
- Experimental Results and Discussion
- Conclusions

Implementation Flow and Tools

- RTL generation from architecture
- Timing-driven synthesis, place and route flow
- Use range of architectural and implementation parameters to capture design space
- Nonparametric regression modeling

Scope of Study

- Netmaker (Cambridge) \rightarrow fully synthesizable router RTL codes
- Libraries: TSMC (1) 130G, (2) 90G, and (3) 65GP
- Tool Chain: Synopsys Design Compiler (DC), Cadence SOC Encounter (SOCE), Salford MARS 3.0
- Experimental axes:
 - Technology nodes: {130nm, 90nm, 65nm}
 - Implementation parameters:
 - *f_{clk}* = target clock frequency
 - *ar* = aspect ratio
 - util = row utilization
 - Architectural parameters:
 - *fw* = flit-width
 - *n*_{vc} = number of virtual channels
 - *n_{port}* = number of input/output ports
 - *I*_{buf} = buffer length (#flit buffers / VC)

Outline

- ✓ Motivation
- Implementation Flow and Scope of Study
- Modeling Methodology
 - Modeling Problem
 - Power Modeling
 - Area Modeling
- Experimental Results and Discussion
- Conclusions

Modeling Problem

- Problem: Accurately predict y given vector of parameters \vec{x}
- Difficulties: (1) which variables x to use, and (2) how different variables combine to generate y

$$y = f(\vec{x}) + noise$$

- Parametric regression: requires a functional form
- Nonparametric regression: learns about the best model from the data itself

 \rightarrow For our purpose, allows decoupling of underlying architecture / implementation from modeling effort

 Our approach: Use nonparametric regression to model power and area of an on-chip router

Multivariate Adaptive Regression Splines (MARS)

- MARS is a nonparametric regression technique
- MARS builds models of form:

- Each basis function B_i(x) can be:
 - a constant
 - a "hinge" function max(0, c-x) or max(0, x-c)
 - a product of two or more hinge functions

Two modeling steps:

- (1) forward pass: obtains model with defined maximum number of terms
- (2) backward pass: improves generality by avoiding an overfit model

Power and Area Modeling

 We model power dependence on microarchitecture and implementation parameters

•
$$P_{dynamic} = 0.5 \times \alpha \times c_{switching} \times V^2 \times f_{clk}$$

- $P_{\text{leakage}} = i_{\text{leak}} \times V$
- Our modeling task:
 - Model dependence of $(P_{dynamic} / \alpha \times V^2 \times f_{clk})$ on microarchitectural and implementation parameters
 - Model dependence of (P_{leakage} / V) on microarchitectural and implementation parameters
- Similarly, we model area dependence on microarchitecture and implementation parameters
 - Area is the sum of standard cell area

Example MARS Output Models (1)

Dynamic power model of a router in 65nm technology

$$\begin{split} &\mathsf{B}_1 = \max(0, \, n_{port} \, \text{-}\, 5); \, \mathsf{B}_2 = \max(0, \, 5 - n_{port}); \, \dots \\ &\mathsf{B}_{34} = \max(0, \, f_{clk} \, \text{-}\, 200) \times \mathsf{B}_1; \, \mathsf{B}_{35} = \max(0, \, 200 \, \text{-}\, f_{clk}) \, \mathsf{B}_1 \end{split}$$

$$P_{\text{dynamic}} = 0.5 \times \alpha \times (0.83 + 0.64 \times B_1 - 0.31 \times B_2 + 0.16 \times B_3 \dots - 0.003 \times B_{33} + 0.003 \times B_{34} - 0.003 \times B_{35}) \times V^2$$

Leakage power model of a router in 65nm technology

$$\begin{split} & \mathsf{B}_1 = \max(0, \, n_{port} \, \text{-}\, 5); \, \mathsf{B}_2 = \max(0, \, 5 \, \text{-}\, n_{port}); \, \dots \\ & \mathsf{B}_{34} = \max(0, \, n_{vc} \, \text{-}\, 3) \times \mathsf{B}_{27}; \, \mathsf{B}_{35} = \max(0, \, 3 \, \text{-}\, n_{vc}) \times \mathsf{B}_{27}; \end{split}$$

 $P_{\text{leakage}} = (0.13 + 0.04 \times B_1 - 0.04 \times B_2 + 0.01 \times B_3 \dots - 6.59E-5 \times B_{34} - 5.53E-5 \times B_{35}) \times V$

Example MARS Output Models (2)

Area model of a router in 65nm technology

$$\begin{split} &\mathsf{B}_1 = \max(0,\,n_{port}\,-\,5);\,\mathsf{B}_2 = \max(0,\,5\,-\,n_{port});\,\dots \\ &\mathsf{B}_{34} = \max(0,\,24\,-\,fw)\times\mathsf{B}_{14};\,\mathsf{B}_{35} = \max(0,\,f_{clk}\,-\,100)\times\mathsf{B}_{15}; \end{split}$$

Area = $0.02 + 0.01 \times B_1 - 0.004 \times B_2 + 0.003 \times B_3 \dots - 4.59E-6 \times B_{34} - 1.23E-7 \times B_{35}$

Total wirelength model of a router in 65nm technology (NEW)

$$B_1 = \max(0, n_{port} - 5); B_2 = \max(0, 5 - n_{port}); ...B_{33} = \max(0, 1 - ar) \times B_{26}; B_{34} = \max(0, util - 0.7) \times B_8;$$

 $WL_{total} = 112269 + 64952.4 \times B_1 - 31881.3 \times B_2 \dots + 157.639 \times B_{33} - 321.06 \times B_{34}$

- Closed-form expressions with respect to architectural and implementation parameters
- Suitable to drive early-stage architecture-level design exploration

Outline

- ✓ Motivation
- Implementation Flow and Scope of Study
- Modeling Methodology
 - Modeling Problem
 - Power Modeling
 - ✓ Area Modeling
- Experimental Results and Discussion
- Conclusions

Model Validation

- We validate our models against layout data
- We compare our models against
 (1) parametric regression models and
 (2) ORION 2.0
- We show the importance of layout data in model generation → increased accuracy
- We show the sensitivity and stability of our models

Comparison Models

Parametric Regression (PReg):

•We assume baseline virtual channel (VC) with:

FIFO buffers implemented as flip-flop registers

→
$$c_{switching}$$
 ~ $O(I_{buf} \times fw \times n_{port})$; i_{leak} ~
 $O(I_{buf} \times fw \times n_{port} \times n_{vc})$

- Multiplexer tree crossbar
- → c_{switching} ~ O(n²_{port} × fw); i_{leak} ~ O(n²_{port} × fw)
 VC "selection" arbitration (cf. Kumar et al. '07)

•
$$\rightarrow$$
 c_{switching} ~ O(n²_{port}); i_{leak} ~ O(n²_{port} × n_{vc})

→ Requires modeler to have knowledge about the underlying architecture / circuit implementation

• ORION 2.0

Comparison vs. ORION 2.0

- Comparison against ORION 2.0 w.r.t. microarchitectural parameters:
 - (1) #VC (n_{vc}), (2) flit-width (fw), (3) #port (n_{port}), and (4) buffer length (I_{buf})

Comparison vs. PReg. and ORION 2.0

Metric		Power Model			Area Model		
		New	PReg	ORION2.0	New	PReg	ORION2.0
min % error	130nm	0.011	7.659	9.526	0.001	29.88	10.121
	90nm	0.008	7.236	6.865	0.002	27.82	8.229
	65nm	0.007	6.921	7.73	0.001	29.12	9.111
max % error	130nm	62.05	96.51	103.2	60.72	107.8	104.118
	90nm	60.07	62.31	85.35	6045	109.2	88.331
	65nm	59.41	108.4	81.81	61.84	111.3	86.228
avg % error	130nm	6.012	23.46	41.33	5.961	26.33	38.117
	90nm	5.654	25,11	30.22	5.045	27.11	32.566
	65nm	5.817	24.43	32.78	5.411	26.23	33.298

- Power estimation error reductions
 - PReg: avg error 76.2% (24.4% \rightarrow 5.8%), max error 45.2% (108.4% \rightarrow 59.4%)
 - ORION 2.0: avg error 82.3% (32.8% \rightarrow 5.8%), max error 27.4% (81.8% \rightarrow 59.4%)
- Area estimation error reductions
 - PReg: avg error 79.4% (26.2% \rightarrow %5.4), max error 45.5% (111.3% \rightarrow 61.8%)
 - ORION 2.0: avg error 83.8% (33.3% \rightarrow 5.4%), max error 28.3% (86.2% \rightarrow 61.8%)

Variable Importance

- We use MARS to identify relative variable importance
- Dominant parameter post-synthesis: n_{vc}
- Dominant parameter post-layout: n_{port}
 - Shows impact of missing layout information at post-synthesis stage
- Example: multiplexer crossbar power is due to (1) multiplexers and (2) interconnection grid between input / output ports

Post-synthesis model is oblivious to (2)

Doromotor	Variable Importance (%)			
Falameter	Post-Synthesis	Post-Layout		
n _{port}	92.98	100		
n _{vc}	100	95.44		
I _{buf}	88.41	73.99		
fw	67.03	64.81		

Model Sensitivity and Stability

- Sensitivity to size of training data
 - (1) $s_{tr} = 1/2$, (2) $s_{tr} = 1/3$, (3) $s_{tr} = 1/5$, (4) $s_{tr} = 1/10$, and (5) $s_{tr} = 64$
 - For (1)-(4) we train models using a fraction s_{tr} of the available data points, and validate them on the rest of the data points
 - For (5) we use 64 (out of 256) data points to train the model, and validate it across all 256 available data points

Motrio	Power Model						
INIEUIC	s _{tr} = 1/2	s _{tr} = 1/3	s _{tr} = 1/5	s _{tr} = 1/10	s _{tr} = 64		
min % error	0.006	0.006	0.007	0.01	0.006		
max % error	12.415	49.226	81.11	109.224	77.32		
avg % error	1.662	4.012	7.997	27.177	21.23		

• **Stability** w.r.t. random choice of training data

Metric	Power Model					
	EXP 1	EXP 2	EXP 3	EXP 4	EXP 5	
max % error	12.415	13.126	13.911	12.013	11.932	
avg % error	1.662	1.412	1.214	1.077	1.103	

Extensibility of Approach

- Have used same methodology to develop models for interconnect wirelength (WL) and fanout (FO)
- Wirelength model
 - On average, within 3.4% of layout data
 - 91% reduction of avg error vs. existing models (cf. Christie et al. '00)
- Fanout model
 - On average, within 0.8% of the layout data
 - 96% reduction of avg error vs. existing models (cf. Zarkesh-Ha et al. '00)

Outline

- ✓ Motivation
- Implementation Flow and Scope of Study
- Modeling Methodology
 - Modeling Problem
 - Power Modeling
 - ✓ Area Modeling
- Experimental Results and Discussion
- Conclusions

Conclusions and Future Directions

- Generally applicable modeling methodology that can leverage architectural parameters and RTL-to-layout implementation
- Achieved accurate power and area models for on-chip router
- Improvement over parametric regression models
 - Power: 76.2% (45.2%) reduction of average (maximum) error
 - Area: 79.4% (44.5%) reduction of average (maximum) error
- Improvement over ORION 2.0
 - Power: 82.3% (27.4%) reduction of average (maximum) error
 - Area: 83.8% (28.3%) reduction of average (maximum) error

Ongoing work

- Maximum f_{clk} modeling w.r.t. architectural and implementation parameters
- Other architectural building blocks (DSP cores, DesignWare library, ...)
- Power, performance and cost estimators for 3-D design space exploration
- Accurate trace-driven NoC power estimation models