Obstacle-Aware Longest Path using Rectangular Pattern Detouring in Routing Grids

Jin-Tai Yan, Ming-Ching Jhong and Zhi-Wei Chen

Department of Computer Science & Information Engineering Chung Hua University, Taiwan
Outline

- Introduction
- Problem Formulation
- Rectangular Pattern Detouring
- Obstacle-Aware Longest-Path in Routing Grids
- Experimental Results
- Conclusions
Introduction

- More than thousands of pins are involved in modern PCBs.
- Routing methods are complex under various design constraints, ex: length matching, coupling control...etc.
- Physical “obstacles” on PCB
 - Component mounting pads: DIP / SMD
 - Pre-route predictions: analog / TTL design reservation

Source from: www.speedingedge.com
Motivation & Contributions

- The length controllability of a net decides
 - Routing delay of the net
 - Ability to meet the length-matching constraint
- An effective generation for the longest path gives
 - Grid-based global routing for a single net in PCB
 - Consideration of obstacles on PCB
 - Use of Rectangular pattern detouring for the reduction of the routing time
Preliminary

- **Routing path**
 - Two grids are specified as the locations of the start and target terminals, \(S \) and \(T \)
 - A path connects \(S \) and \(T \) by using horizontal or vertical segments and passes each available grid at most once
 - The length of a connecting path is defined as the number of passed grids in the routing path

- **Flip operations for path detouring**
 - **R-flip**: A partial path can be detoured by using adjacent routing grids and inserting a detouring path, \(P' \)
 - **C-flip**: A partial path, \(P \), can be replaced by using another partial path, \(P' \), where the length of \(P' \) is larger than that of \(P \)
Problem Formulation

[Input]
- A single routing layer in routing grids
- A start terminal, S, and a target terminal, T, in $m \times n$ routing grids
- A set of obstacles

[Output]
- The longest path that passes the available routing grids from S to T
Rectangular Pattern Detouring

- Given a set of $m \times n$ routing grids without any obstacle, all the possible detouring results are considered as follows:
 - Both S and T are located on corners
 1. (Cond. I) In different sides
 2. (Cond. II) In the same side
 - S and T are located on boundaries but not on corners
 1. (Cond. III) In the same side
 2. (Cond. IV) In different sides
Cond. I: Corners in Different Sides

If \((m \text{ or } n = 1)\) ➞ straight path
If \((m \text{ or } n = 2)\) ➞ snaking path
If \((m \text{ and } n \geq 3)\)

- \(m \times n\) routing grids for corners in different sides
 - Two L-type routing paths, and
 - \((m-2) \times (n-2)\) routing grids for corners in different sides

<table>
<thead>
<tr>
<th>Detouring Length</th>
<th>#Unreachable grids</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mn)</td>
<td>0</td>
<td>(1) (m\text{ or } n) is odd</td>
</tr>
<tr>
<td>(mn-1)</td>
<td>1</td>
<td>(1) (m\text{ and } n) are even</td>
</tr>
</tbody>
</table>
If \(n \geq 2 \)
- \(mxn \) routing grids for corners in the same side
 - One L-type routing path, and
 - \(mx(n-1) \) routing grids for corners in different sides

<table>
<thead>
<tr>
<th>Detouring Length</th>
<th>#Unreachable Grids</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mn)</td>
<td>0</td>
<td>(1) ((m) is odd) or ((n) is even)</td>
</tr>
<tr>
<td>(mn-1)</td>
<td>1</td>
<td>(1) ((m) is even) and ((n) is odd)</td>
</tr>
</tbody>
</table>
Cond. III: Boundary in the Same Side

- S and T are located on adjacent grids
 - \(p(q) \) are the number of columns on the left(right) sides of S(T)
- \(mxn \) routing grids for boundary in the same side
 - Two L-type routing paths, and
 - \((m-1)x(n-1)\) routing grids for corners in different sides

<table>
<thead>
<tr>
<th>Detouring Length</th>
<th>#Unreachable Grids</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mn)</td>
<td>0</td>
<td>(1) (m) or (n) is even</td>
</tr>
<tr>
<td>(mn-1)</td>
<td>1</td>
<td>(1) (m) and (n) are odd</td>
</tr>
</tbody>
</table>
Cond. III: Boundary in the Same Side

- S and T are not located on adjacent grids
 - \(p(q) \) are the number of columns on the left(right) sides of S(T); \(r \) is the number of columns between S and T
- \(mxn \) routing grids for boundary in the same side
 - \(mxr \) routing grids for corners in the same side
 - \(mxp \) and \(mxq \) routing grids for boundary in the same side

<table>
<thead>
<tr>
<th>Detouring Length</th>
<th>#Unreachable Grids</th>
<th>Conditions</th>
</tr>
</thead>
</table>
| \(mn \) | 0 | (1) \(m \) and \(r \) are even
| | | (2) \(m \) is odd and \(p \) and \(q \) are even |
| \(mn-1 \) | 1 | (1) \(m \) is even and \(r \) is odd
| | | (2) \(m \) is odd and \(p + q \) is odd |
| \(mn-2 \) | 2 | (1) \(m \), \(p \) and \(q \) are odd |
Cond. IV: Boundaries in Different Sides

- S and T are located on opposite sides
 - \(p(q) \) are the number of columns on the left(right) sides of S(T); \(r \) is the number of columns between S and T
- mxn routing grids for boundaries in different sides
 - mxr routing grids for corners in different sides, and
 - mxp and mxq routing grids for boundary in the same side

<table>
<thead>
<tr>
<th>Detouring Length</th>
<th>#Unreachable Grids</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mn)</td>
<td>0</td>
<td>(1) (m is even) and (r) is odd) (2) (m is odd) and (p) and q are even</td>
</tr>
<tr>
<td>(mn-1)</td>
<td>1</td>
<td>(1) m and (r) are even (2) (m is odd) and (p+q) is odd</td>
</tr>
<tr>
<td>(mn-2)</td>
<td>2</td>
<td>(1) m, p and q are odd</td>
</tr>
</tbody>
</table>
Cond. IV: Boundaries in Different Sides

- S and T are located on adjacent sides
 - p is the number of columns on the left sides of S; q is the number of columns between S and T; v is the number of rows between S and T; u is the number of rows on the top of T
- mxn routing grids for boundaries in different sides
 - vxq routing grids for corners in different sides, and
 - uxq and pxm routing grids for boundary in the same side

<table>
<thead>
<tr>
<th>Detouring Length</th>
<th>#Unreachable Grids</th>
<th>Conditions</th>
</tr>
</thead>
</table>
| mn | 0 | (1) (q is even) and (u and v are odd)
 | | (2) (p and u are even) and (v is odd)
 | | (3) (q is odd) and (u and v are even) |
| mn-1 | 1 | (1) p, q and v are odd
 | | (2) (p is even) and (q and u are odd)
 | | (3) (p is odd) and (q and r are even)
 | | (4) p, q and v are even |
| mn-2 | 2 | (1) (p and u are odd) and (v is even) |
Design Flow for Obstacle-aware Longest Path Generation

Start and Target Terminals in Routing Grids with Obstacles

Iterative Rectangular Partition
- Boundary Region Construction for Routing Grids
- Boundary Reconstruction for Internal Routing Grids
- Adjacent Graph Construction

Obstacle-aware Longest-path Generation
- Dead Region Elimination
- Initial Detouring Path Generation
- External Detouring Path Insertion
- Internal Detouring Path Insertion

Obstacle-Aware Longest Path
Iterative Rectangular Partition

- Construction of Outer Boundary: Minimum covering rectangular boundaries
- Definition of Corner Grids: the perpendicular sides of any routing grid are
 - Outer boundary / Obstacles / Partitioned regions
- Construction of Rectangular Regions: Maximum rectangular region for corner grids
- Iterative Rectangular Partition
 - Construction of Outer Boundary -> Definition of Corner Grids -> Construction of Rectangular Regions
 - Until all of empty grids are included
Construction of an Adjacent Graph

- Given a set of partitioned regions, with R_s, R_T and a set of empty regions
- Adjacent graph, $G(V, E)$
 - An undirected edge-weighted graph
 - $v_i, v_i \subseteq V$, represents the partitioned region, R_i
 - $e_{ij}, e_{ij} \subseteq E$, represents the adjacent relation between two partitioned regions, R_i and R_j
 - Edge weight (w)
 - Only an adjacent grid, $w = 1$
 - More than two adjacent grids, $w = 0$
Initial Detouring Path Generation

- Dead region elimination
 - Dead region: v_i is not v_s and v_T, the degree is 1 and the edge weight is 1
 - Elimination of dead regions due to no help for path generation
- Initial detouring path generation
 - Based on breadth-first search and rectangular pattern detouring, the initial detouring path between v_s and v_T is determined
- Reference vertices
 - The vertices in the adjacent graph are covered by the current detouring path
External / Internal Detouring Path Insertion

- **Adjacent relation with reference vertices**
 - Adjacent relation can be obtained by using a BFS algorithm
 - W = “0”: for a R-flip operation
 - W = “1”: for a C-flip operation possibly

- **Selection policy**
 1. A vertex is included for a R-flip operation, excluded by a C-flip operation
 - Directly involve the vertex for a R-flip operation
 2. A vertex is both included for a R-flip and C-flip operations
 - Choose the results with min. number of unreachable grids

- **Internal detouring path**
 - The region is generated by running a C-flip operation and routed by running a R-flip operation
Analysis of Time Complexity

Given a set of $m \times n$ routing grids

- Iterative rectangular partition: $O(mn \log(mn))$
 - Sorting the locations of all the obstacles: $O(mn \log(mn))$
 - Selection of all the partitioned regions: $O(mn)$
- Obstacle-aware longest path generation: $O(mn)$
 - Dead region elimination: $O(mn)$
 - Initial detouring path by BFS algorithm: $O(mn)$
 - External / Internal detouring insertions: $O(mn)$

Obstacle-aware longest path generation: $O(mn \log(mn))$
Experimental Results

- **Implementation Environment**
 - PC: Pentium QuadCore 2.66GHz w/ 2G memory
 - Standard C++ language
 - Ten tested cases, Data01-Data10, from Y. Kohira, et al. [5]

<table>
<thead>
<tr>
<th>Circuits</th>
<th>Area</th>
<th>#Grid</th>
<th>#Dead Grids</th>
<th>US Routing</th>
<th>Our Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wirelength (#Grid)</td>
<td>Time(s)</td>
</tr>
<tr>
<td>Data01</td>
<td>10x9</td>
<td>83</td>
<td>0</td>
<td>80 (96.4%)</td>
<td>0.004</td>
</tr>
<tr>
<td>Data02</td>
<td>11x13</td>
<td>121</td>
<td>0</td>
<td>119 (98.3%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Data03</td>
<td>11x13</td>
<td>110</td>
<td>0</td>
<td>107 (97.3%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Data04</td>
<td>11x13</td>
<td>106</td>
<td>0</td>
<td>103 (97.2%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Data05</td>
<td>11x13</td>
<td>98</td>
<td>0</td>
<td>95 (96.9%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Data06</td>
<td>11x13</td>
<td>116</td>
<td>0</td>
<td>85 (73.3%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Data07</td>
<td>11x13</td>
<td>117</td>
<td>0</td>
<td>113 (96.6%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Data08</td>
<td>11x13</td>
<td>118</td>
<td>0</td>
<td>115 (97.5%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Data09</td>
<td>20x20</td>
<td>297</td>
<td>21</td>
<td>251 (90.9%)</td>
<td>0.010</td>
</tr>
<tr>
<td>Data10</td>
<td>70x100</td>
<td>6654</td>
<td>4</td>
<td>6626 (99.6%)</td>
<td>4.760</td>
</tr>
</tbody>
</table>
Conclusions

- PCB Routing,
 - The length controllability of a net decides the routing delay of the net and skew
 - The consideration of obstacles is necessary

- Longest Path Generation
 - Analysis of unreachable grids for rectangular pattern detouring for the reduction of the routing time
 - Based on the rectangular partition in routing grids, an efficient approach is proposed to generate the grid-based longest path for PCB routing

- Experimental Results
 - Compared with US routing, our proposed approach can achieve longer paths for tested examples in less CPU time

Thanks Your Kind Attention!