

Newfoundland & Labrador, Canada

4R-2

Symmetry-Aware TCG-Based Placement Design under Complex Multi-Group Constraints for Analog Circuit Layouts

Rui He and Lihong Zhang Faculty of Engineering Memorial University of Newfoundland

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Analog Placement

- Placement problem
 (1) Problem definition
 (2) Goal
- Symmetric constraint
 - (1) Sensitive cells placed on opposite sides
 - (2) Reduce the effect of parasitic mismatches
 - (3) Reduce the circuit sensitivity

Symmetric Constraints

- Symmetric types Symmetric pair cell Self symmetric Symmetric group
- Flow
 - Perturb
 - Packing
 - Simulate annealing
- Comparison
 - performance
 - time complexity of perturbation
 - time complexity of packing

Our Contributions

Our Contributions

- (1)introduce conditions to verify the symmetric feasibility of TCG enclosing multiple groups;
- (2) propose an efficient contour-based packing scheme;
- (3) a set of random perturbation operations with time complexity of O(n) is defined.

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Prior Work

- Previous placement applications
 -SP
 - -Transitive closure graph (TCG)
 - -TCG-S
 - -O-tree
 - -B-tree
 - -HB*-tree

Prior Work

• TCG

• SP

Uses an ordered pair of sequence which is α - and β sequence to encode the placement .The topological relationship between two cells *a* and *b* can be derived from an SP:

•if $\alpha_a^{-1} < \alpha_b^{-1}$ and $\beta_a^{-1} < \beta_b^{-1}$, then cell *a* is to the left of cell *b*; •if $\alpha_a^{-1} < \alpha_b^{-1}$ and $\beta_b^{-1} < \beta_a^{-1}$, then cell *a* is on the top of cell *b*,

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Symmetric feasible conditions

Let (G_h, G_v) be the TCG representation of a placement containing two symmetry groups Γ and Φ . For the multi-group situation, we can define the following conditions.

Definition 1: For $(a, a') \in \Gamma$, $(b, b') \in \Gamma$, $(c, c') \in \Phi$, and $(d, d') \in \Phi$, a TCG representation is symmetric-feasible if the following four conditions are satisfied. For intra-group of Γ (the same for Φ)

$$in G_h: a \models b \iff a' \models b'; \qquad (1)$$

$$in G_v: a \perp b \iff b' \perp a'; \qquad (2)$$

For inter-group between Γ and Φ

in
$$G_h : a \models c$$
 and $a \uparrow \models c \land \neq > d \models b$ and $d \uparrow \models b \land$; (3)
in $G_v : a \perp c \lt \neq > c \land \perp a \land$; (4)

where $\langle \neq \rangle$ denotes the two cases before and after this symbol cannot simultaneously appear in the same TCG.

Symmetric feasible conditions

below Φ ; (III) Γ and Φ are intermingled; (IV) Φ is placed within Γ

• Lemma: Any placement containing multiple symmetry groups can be represented with a symmetric-feasible TCG.

Symmetric TCG

4 APPLIED

Fig. 2. (a) TCG; (b) topological order; (c) symmetric placement with separate self-symmetric halves; (d) final symmetric placement

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Symmetric Packing Flow

Beg	zin
1	Construct the topological order of the TCG;
2	Generate packSeq, which contains only the symmetric cells;
3	Use the dummy axis cells to separate packSeq into sub-sequences;
4	Create a list made up of the sub-sequences;
5	Do initial packing for the first sub-sequence, update the axis position
	X _{axis} ;
6	For (the <i>list</i> is not empty)
7	Do initial packing for the second sub-sequence;
8	Follow <i>packSeq</i> one by one. Compare the Y coordinates of each two cells in one symmetric pair such as (a, a') , and make $Y_a = Y_{a'} = max(Y_a, Y_{a'})$ and shift the packing symmetric cells that have vertical relationship with the shifted cells;
9	Follow <i>packSeq</i> one by one, for every two cells in one symmetric pair such as (a, a') ; calculate $\Delta X_a = X_a - X_{axis} $ and $\Delta X_{a'} = X_{a'} - X_{axis} $. Then shift one symmetric cell to make $\Delta X_a = \Delta X_{a'} = max (\Delta X_a)$ $\Delta X_{a'}$. Also tune-up the corresponding cells with the same ΔX_a :
10	Do final packing for the first and second sub-sequences:
11	Remove the first sub-sequence from the sub-sequence list:
12	End for
13	Consider all symmetric cells as preplaced cells and final-pack the whole sequence;
14	Post-process self-symmetric cells to merge two split parts to one unit;
En	d
E:	2 Commentation and the floor

Fig. 3. Symmetric packing flow

Symmetric Packing

- Step 1:packing preparation; Step 2:initial packing (a-d); Step 3:tune-up operation on symmetric cells (f-h); Step 4:final packing (i)
- Two Schemes : (1)general flow (2) simplified flow
- Complexity is $O(g \cdot m \cdot lgm)$.
- Lemma: Any symmetric-feasible TCG containing multiple symmetry groups can be packed to a symmetric placement in polynomial time.

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Symmetric TCG Perturbation

- A. Cluster Edge Move-Reverse and Edge Move Operations
- in-in (in-out) degree
- in-in (or in-out) cluster
- Cluster edge move-reverse (or cluster edge move) operation
- All the operations in part B can be done with Cluster edge movereverse (or cluster edge move) operation.
- Lemma: Without losing TCG transitive-closure property, the topological relationship between any two vertices in a TCG can be modified by a cluster edge move or cluster edge move-reverse operation, which takes O(n) time.

Symmetric TCG Perturbation

- **B.** Five Perturbation Operations
- Vertex Rotation
- Symmetric Swap

This operation is that one vertex in a symmetric pair swaps position with its symmetric counterpart.

• Symmetric-Cell Move

This operation is to change the horizontal or vertical relationship between symmetric vertices within one symmetry group or from different symmetry groups.

• Asymmetric-Cell Move

This operation is to perturb the topology relationship between an asymmetric vertex and other vertices.

• Symmetry-Group Move

Symmetric TCG Perturbation

Theorem 1: Using operations above, the solution space of the symmetric-feasible TCGs can be fully explored. Each operation takes at almost O(n) time, where *n* is the number of cells.

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Experimental Results

- We implement this symmetry TCG scheme based on a simulated annealing algorithm. The program was coded in C++ under Linux operating system and tested on a 2.1 GHz PC with several benchmarks.
- Our cost function for evaluation is obtained from the following equation:

 $Cost = \alpha_{area} \cdot Area + \sum_i \beta_i WireLength_i$

- Test Cases
 - (1) MCNC benchmarks
 - (2) biasynth_2p4g of 65 cells and lnamixbias_2p4g of 110 cells
 - (3) modified 65 cells and 110 cells, OTA

Experimental Results

I.MCNC BENCHMARKS																
Circuit	cell s	grou ps		Abs		SP		SPWD		SP+LP	HB	HB*-tree		CG-1	S-TCG-2	
ante	9	2	0	Cost 12		0.7%	112.2%		107.7%		106.4%	101.2%		100	.0%	50.74
apic			Т	ime 10		00%	767%		466.7%		400.0%	100%		119	9%	3
	22		0	Cost 1		8.9%	109.3%		108.5%		107.4%	103.7%		99.	0%	1.33
amiss	33		Т	ïme	1670%		1190%		243.4%		354.8%	83.8%		121	1%	62
ami49	10	2	0	Cost 12		9.1% 107.9		9% 108.7%			107.1%	102.5%		99.2	2%	42.21
	49		Т	Time 22		.50% 136		0%	201.0%		228.0%	90.4%		118	3%	107
]	I.CIF	RCUIT TE	ST						
Circuit	t Ce	ell gr s p	ou s			Al	bs		SP		SPWD	SP+LP		HB*·	-tree	S-TCG-2
biasynt	h	5	,	Co	st	127%		109.8%			107.4%	104%		102.	1%	5.42
_2p	C	0 3)	Tir	ne	215	0%		611%		154%	221%		89.3	3%	131
lnamixbi	as 1	10 4		Co	ost	119)%	1	14.6%		109%	109%		103.	.2%	51.41
_2p	1	10 .)	Time		243	0%	1	130%		543%	920%		82.5	5%	287
mod_	6	5	2	Co	ost	123	3% 1		07.8%		107.1%	10	6%	104.	.2%	5.53
biasynt	h		,	Tir	ne	213	7%		621%		153%	224%		88.	5%	144
mod_lna	mi 1	10		Cost		120%		114.1%		111%		11	0%	105.	.1%	52.23
xbias			,	Tir	me 244		0% 1		1110%		572%	934%		86.3	3%	294
				Co	ost 119)% 1		14.9%		107.2%	105%		105.	.5%	27.53
			,	Time		2084%		724%			167%	207%		90.4	4%	263

Experimental Results

Fig. 7. Final placement of circuit lnamixbias_2p4g

Fig. 8. Final placement of circuit OTA

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Conclusions

- In this paper, we introduce a scheme to handle the symmetric constraints in the analog layout placement.
 - An efficient perturbation strategy was proposed to achieve random state conversion in O(n) time without losing TCG symmetric-feasibility and validity.
 - Although the HB*-tree scheme slightly outperforms our approach in terms of area in some larger circuits, our proposed approach is able to cover any placement configurations.

Thank you and Questions?