Symmetry-Aware TCG-Based Placement Design under
Complex Multi-Group Constraints for Analog Circuit Layouts

Rui He and Lihong Zhang
Faculty of Engineering Memorial University of Newfoundland

Outline

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Analog Placement

- Placement problem
(1) Problem definition
(2) Goal
- Symmetric constraint
(1) Sensitive cells placed on opposite sides
(2) Reduce the effect of parasitic mismatches
(3) Reduce the circuit sensitivity

Symmetric Constraints

- Symmetric types

Symmetric pair cell
Self symmetric
Symmetric group

- Flow

Perturb
Packing
Simulate annealing

- Comparison
performance
time complexity of perturbation
time complexity of packing

Our Contributions

Our Contributions

- (1)introduce conditions to verify the symmetric feasibility of TCG enclosing multiple groups;
- (2) propose an efficient contour-based packing scheme;
- (3) a set of random perturbation operations with time complexity of $O(n)$ is defined.

Outline

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Prior Work

- Previous placement applications
-SP
-Transitive closure graph (TCG)
-TCG-S
-O-tree
-B-tree
-HB*-tree

Prior Work

- TCG

- SP

Uses an ordered pair of sequence which is α - and β sequence to encode the placement .The topological relationship between two cells a and b can be derived from an SP:
-if $\alpha_{a}^{-1}<\alpha_{b}{ }^{-1}$ and $\beta_{a}^{-1}<\beta_{b}{ }^{-1}$, then cell a is to the left of cell b; -if $\alpha_{a}^{-1}<\alpha_{b}^{-1}$ and $\beta_{b}^{-1}<\beta_{a}^{-1}$, then cell a is on the top of cell b,

Outline

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Symmetric feasible conditions

Let $\left(G_{h}, G_{v}\right)$ be the TCG representation of a placement containing two symmetry groups Γ and Φ. For the multi-group situation, we can define the following conditions.

Definition 1: For $\left(a, a^{\prime}\right) \in \Gamma,\left(b, b^{\prime}\right) \in \Gamma,\left(c, c^{\prime}\right) \in \Phi$, and $\left(d, d^{\prime}\right) \in \Phi$, a TCG representation is symmetric-feasible if the following four conditions are satisfied. For intra-group of Γ (the same for Φ)
in $G_{h}: a \vdash b\langle\neq\rangle a^{\prime} 卜 b^{\prime}$;
in $G_{v}: a \perp b\langle\neq\rangle b^{\prime} \perp_{a^{\prime}}$;
For inter-group between Γ and Φ in $G_{h}: a \mid-c$ and $a^{\prime} \mid c^{\prime}\langle\neq\rangle+b$ and $d^{\prime} 卜 b^{\prime} ;$
in $G_{v}: a^{\perp} c<\neq>c^{\prime} \perp^{\prime} a^{\prime} ;$
where $\langle\neq\rangle$ denotes the two cases before and after this symbol cannot simultaneously appear in the same TCG.

Symmetric feasible conditions

(I)

(II)

(III)

(IV)

Fig. 1. (I) group Γ is placed at the left of group Φ; (II) Γ is placed below Φ; (III) Γ and Φ are intermingled; (IV) Φ is placed within Γ

- Lemma: Any placement containing multiple symmetry groups can be represented with a symmetric-feasible TCG.

Symmetric TCG

(a)
($\left.a, d, c, b_{l}, D N 1, c^{\prime}, e, a^{\prime}, b_{r}, g, h, f, D N 2, g^{\prime}, f^{\prime}\right)$
(b)

(c)

(d)

Fig. 2. (a) TCG; (b) topological order; (c) symmetric placement with separate self-symmetric halves; (d) final symmetric placement

Outline

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Symmetric Packing Flow

Begin

1 Construct the topological order of the TCG;
2 Generate packSeq, which contains only the symmetric cells;
3 Use the dummy axis cells to separate packSeq into sub-sequences;
4 Create a list made up of the sub-sequences;
5 Do initial packing for the first sub-sequence, update the axis position $X_{\text {ausis }}$;
6 For (the list is not empty)
7 Do initial packing for the second sub-sequence;
8 Follow packSeq one by one. Compare the Y coordinates of each two cells in one symmetric pair such as (a, a), and make $Y_{a}=Y_{a^{\prime}}=$ $\max \left(Y_{a}, Y_{a}\right)$ and shift the packing symmetric cells that have vertical relationship with the shifted cells;
9 Follow packSeq one by one, for every two cells in one symmetric pair such as (a, a); calculate $\Delta X_{a}=\left|X_{a}-X_{\alpha x i s}\right|$ and $\Delta X_{a^{\prime}}=\left|X_{a^{\prime}}-X_{a x i s}\right|$. Then shift one symmetric cell to make $\Delta X_{a}=\Delta X_{a^{\prime}}=\max \left(\Delta X_{\infty}\right.$ ΔX_{a}). Also tune-up the corresponding cells with the same ΔX_{a};
10 Do final packing for the first and second sub-sequences;
11 Remove the first sub-sequence from the sub-sequence list,
12 End for
13 Consider all symmetric cells as preplaced cells and final-pack the whole sequence;
14 Post-process self-symmetric cells to merge two split parts to one unit; End
Fig. 3. Symmetric packing flow

Symmetric Packing

Fig. 4. Examples of the packing

- Step 1:packing preparation; Step 2:initial packing (a-d); Step 3:tune-up operation on symmetric cells (f-h); Step 4:final packing (i)
- Two Schemes : (1)general flow (2) simplified flow
- Complexity is $O(g \cdot m \cdot \operatorname{lgm})$.
- Lemma: Any symmetric-feasible TCG containing multiple symmetry groups can be packed to a symmetric placement in polynomial time.

Outline

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Symmetric TCG Perturbation

A. Cluster Edge Move-Reverse and Edge Move Operations

- \quad in-in (in-out) degree
- in-in (or in-out) cluster
- Cluster edge move-reverse (or cluster edge move) operation
- All the operations in part B can be done with Cluster edge movereverse (or cluster edge move) operation.
- Lemma: Without losing TCG transitive-closure property, the topological relationship between any two vertices in a TCG can be modified by a cluster edge move or cluster edge move-reverse operation, which takes $O(n)$ time.

Symmetric TCG Perturbation

B. Five Perturbation Operations

- Vertex Rotation
- Symmetric Swap

This operation is that one vertex in a symmetric pair swaps position with its symmetric counterpart.

- Symmetric-Cell Move

This operation is to change the horizontal or vertical relationship between symmetric vertices within one symmetry group or from different symmetry groups.

- Asymmetric-Cell Move

This operation is to perturb the topology relationship between an asymmetric vertex and other vertices.

- Symmetry-Group Move

Symmetric TCG Perturbation

Fig. 6. Example of asymmetric move

Theorem 1: Using operations above, the solution space of the symmetric-feasible TCGs can be fully explored. Each operation takes at almost $O(n)$ time, where n is the number of cells.

Outline

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Experimental Results

- We implement this symmetry TCG scheme based on a simulated annealing algorithm. The program was coded in $\mathrm{C}++$ under Linux operating system and tested on a 2.1 GHz PC with several benchmarks.
- Our cost function for evaluation is obtained from the following equation:

$$
\text { Cost }=\alpha_{\text {area }} \text { Area }+\sum_{i} \beta_{i} \text { WireLength } h_{i}
$$

- Test Cases
(1) MCNC benchmarks
(2) biasynth_2p4g of 65 cells and lnamixbias_2p4g of 110 cells
(3) modified 65 cells and 110 cells, OTA

Experimental Results

I.MCNC BENCHMARKS

Circuit	$\begin{gathered} \text { cell } \\ \mathrm{s} \end{gathered}$	$\begin{gathered} \text { grou } \\ \text { ps } \end{gathered}$		Abs	$\boldsymbol{S P}$	SPWD	$S P+L P$	HB**tree	S-TCG-1	S-TCG-2
apte	9	2	Cost	120.7\%	112.2\%	107.7\%	106.4\%	101.2\%	100.0\%	50.74
			Time	1000\%	767\%	466.7\%	400.0\%	100\%	119\%	3
ami33	33	2	Cost	118.9\%	109.3\%	108.5\%	107.4\%	103.7\%	99.0\%	1.33
			Time	1670\%	1190\%	243.4\%	354.8\%	83.8\%	121\%	62
ami49	49	2	Cost	129.1\%	107.9\%	108.7\%	107.1\%	102.5\%	99.2\%	42.21
			Time	2250\%	1360\%	201.0\%	228.0\%	90.4\%	118\%	107

II.CIRCUIT TEST

Circuit	$\begin{array}{\|c} \hline \text { cell } \\ \mathrm{s} \\ \hline \end{array}$	$\begin{gathered} \text { grou } \\ \text { ps } \end{gathered}$		Abs	SP	SPWD	$S P+L P$	HB**tree	S-TCG-2
biasynth$\ldots 2 \mathrm{p}$	65	3	Cost	127\%	109.8\%	107.4\%	104\%	102.1\%	5.42
			Time	2150\%	611\%	154\%	221\%	89.3\%	131
$\begin{gathered} \text { lnamixbias } \\ 2 p \end{gathered}$	110	5	Cost	119\%	114.6\%	109\%	109\%	103.2\%	51.41
			Time	2430\%	1130\%	543\%	920\%	82.5\%	287
mod_	65	3	Cost	123\%	107.8\%	107.1\%	106\%	104.2\%	5.53
biasynth			Time	2137\%	621\%	153\%	224\%	88.5\%	144
mod_lnami xbias	110	5	Cost	120\%	114.1\%	111\%	110\%	105.1\%	52.23
			Time	2440\%	1110\%	572\%	934\%	86.3\%	294
OTA	69	5	Cost	119\%	114.9\%	107.2\%	105\%	105.5\%	27.53
			Time	2084\%	724\%	167\%	207\%	90.4\%	263

Experimental Results

Fig. 7. Final placement of circuit lnamixbias_2p4g

Fig. 8. Final placement of circuit OTA

Outline

- Introduction
- Prior Work
- Symmetric-feasible TCG
- Symmetric Packing
- Symmetric-feasible TCG perturbation
- Experimental Results
- Conclusions

Conclusions

- In this paper, we introduce a scheme to handle the symmetric constraints in the analog layout placement.
- An efficient perturbation strategy was proposed to achieve random state conversion in $O(n)$ time without losing TCG symmetric-feasibility and validity.
- Although the HB*-tree scheme slightly outperforms our approach in terms of area in some larger circuits, our proposed approach is able to cover any placement configurations.

Thank you

 and
Questions?

