Technology Mapping with Crosstalk Noise Avoidance

Fang-Yu Fan, Hung-Ming Chen, and I-Min Liu
TSMC, Hsinchu, Taiwan
Dept of EE, National Chiao Tung University, Hsinchu, Taiwan
Atoptech, Inc., Santa Clara, CA, USA

ASPDAC 2010
Outline

- Introduction
- Preliminaries
- Proposed algorithm
- Experimental results
- Conclusions
Introduction

- Advanced technology scaling
 - wires become taller and thinner with smaller spacing and higher sidewalls
- Crosstalk effects between interconnection wires become more significant
Previous efforts in crosstalk minimization

- Crosstalk avoidance in different design stages
 - At post routing
 - Uses gate sizing, transistor sizing and wire sizing
 - At global routing
 - A global router with crosstalk model by Lagrangian relaxation
 - Hai Zhou, TCAD 1999
 - Introduces an estimated, congestion-based pre-routing noise analysis
 - Murat R. Becer et al., ISQED’02
 - At placement
 - A crosstalk-aware placement
 - Jinan Lou et al., IEEE Design & Test2004
Motivation

- Considering crosstalk in technology mapping stage
 - Challenges: fidelity of routing estimation
 - A simple crosstalk model with predictive layout information
- Design Freedom
 - Supplying freedom to circuits
 - Technology mapping decides cells and routing
- Recent works in technology mapping
 - Targeting routing congestion
 - A congestion map with probabilistic method
Our contributions

- From the predictive information of pre-placement and pre-routing, we construct a reliable crosstalk model in technology mapping.

- According to our results, the crosstalk in post-routing analysis is indeed decreased by our crosstalk-aware technology mapping.
 - A matching procedure with two-dimensional coupling capacitance map.
 - The cost function sensitive to congestion and crosstalk is easy to extend other objectives, like area and power.
Outline

- Introduction
- **Preliminaries**
- Proposed Algorithm
- Experimental results
- Conclusions
Traditional technology mapping (1/2)

- Minimize area
- Cover each tree optimally using *dynamic programming*

\[
\text{cost}(i) = \min_k \{ \text{cost}(g_i) + \sum_k \text{cost}(k_j) \}
\]

For node \(i\) at gate \(g_i\)

- \(k\) inputs to \(g_i\)
Generates delay-optimal match solutions
- Unknown output load in matching phase
- Stores the *load-delay curve* containing delay-optimal matches in each range of load, called non-inferior matches

Crosstalk model (1/2)

- Assumes that only the coupling capacitance is controllable in layout design
- Models all parameters except coupling capacitance by a crosstalk coefficient \(e_{ij} \) for each net \(i \) from net \(j \)
- The total crosstalk on one net \(i \)

\[
X_{talk_i} = \sum_{j \neq i} e_{ij} C_{ij}
\]

Crosstalk model (2/2)

- Assuming coupling capacitance only exists between neighboring parallel wires by the following form:

\[C = \alpha \frac{\text{length}}{\text{distance}^\beta} \quad \beta \approx 2 \]

- \textit{distance} – the distance of two adjacent net
- \textit{length} – the parallel length of two adjacent net
Problem formulation

- Given a subject graph of a network and a library of gates, generate a mapped netlist which could minimize crosstalk noise effects based on a reliable crosstalk model under specified delay constraints
Outline

- Introduction
- Preliminaries
- **Proposed algorithm**
- Experimental results
- Conclusions
Algorithm overview (1/3)

- Challenges in estimating crosstalk in technology mapping
 - Coupling capacitance requires routing of interconnections
 - Unlike delay, crosstalk cannot be computed by incrementally
Algorithm overview (2/3)

- Solutions overview
 - A quick pattern-based global router to estimate routing topology
 - Defers crosstalk computation to covering phase
 - Requires virtual routing map to capture all wires in mapping solutions
Our approach

- Technology mapping with structural approach
 - Contains load–delay curve for delay model
- The matching phase
 - Employs a companion placement
 - Determines routing net for each match
- The covering phase
 - Generates connection information of whole map
 - Estimates crosstalk
The matching phase — A companion placement

- A placer integrated in technology mapping
- Places the base functions on a layout image
- Updates the new position for the mapped gate by an easy estimated option
- Computes the center point of its fanin/fanout rectangles’ points

The covering phase — Crosstalk map

- After placement and routing by a point model, construct crosstalk map for each fanin net on a match
 - a point model—an center point (x,y) represents the location of gate pins and its position

Coupling capacitance model in vertical direction on a net
Probabilistic extraction (1/2)

- In order to predict track utilization, use probabilistic extraction method.

- Assumptions:
 - Capacitance values of a net only by the location of the nearest neighboring nets.
 - Ignore the coupling effect of a neighboring net more than two tracks.

Six configurations

1. \(\begin{array}{c|c|c|c|c|c|c} \end{array} \)
2. \(\begin{array}{c|c|c|c|c|c|c} \end{array} \)
3. \(\begin{array}{c|c|c|c|c|c|c} \end{array} \)
4. \(\begin{array}{c|c|c|c|c|c|c} \end{array} \)
5. \(\begin{array}{c|c|c|c|c|c|c} \end{array} \)
6. \(\begin{array}{c|c|c|c|c|c|c} \end{array} \)
Probabilistic extraction (2/2)

- Weight the capacitance values of each configuration by the probability of the configuration

\[
total _configurations = \binom{n}{k} k!
\]

\[
coupling _cap_{total(i)} = coupling _cap_{(i)} \times \frac{conf_{(i)}}{total _configurations}
\]

- Sum the \textit{weighted contributions} for all configurations and scale the per unit length values with \textit{the length of the net} segment.
Cost function

- The complete virtual routing map
- The delay optimal matches of primary outputs
- Update the transitive fanin cone of each match

Cost function

\[\text{cost} = \alpha \cdot \text{crosstalk} + \beta \cdot \text{overflow} \]

- Coupling capacitance of each match’s fanin net
- Total track overflow: a global view

\[\text{OF} = \sum_{T^{bin} > 0} T^{bin} \]
Outline

- Introduction
- Preliminaries
- Proposed algorithm
- Experimental results
- Conclusions
Experimental setup (1/2)

- Mapping algorithm incorporated in **SIS**
 - Technology files in UMC 90 nm process
 - Library: enhanced *lib2.genlib* with up to 4 strengths for each gate
- ISCAS’85 benchmarks
- Capo for pre-placement
- Placement and routing in Cadence’s SoC Encounter
- Timing and noise analysis in *CeltIC* of Encounter
Experimental setup (2/2)

- SIS is modified to use pre-placement to compute wire delay and wire load

- Constraints setting
 - Timing constraints: from delay mode in SIS, extend 15% of the timing constraints
 - Set core utilization as 0.8 at placement in SoC Encounter
Experimental results (1/3)

- **SIS**: original SIS with companion placement
- **Ours**: crosstalk-aware technology mapping

<table>
<thead>
<tr>
<th></th>
<th>Area (um²)</th>
<th>number of cells</th>
<th>Delay (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIS</td>
<td>Ours</td>
<td>increase</td>
</tr>
<tr>
<td>C432</td>
<td>616.56</td>
<td>650.92</td>
<td>5.6%</td>
</tr>
<tr>
<td>C499</td>
<td>1418.26</td>
<td>1572.67</td>
<td>10.9%</td>
</tr>
<tr>
<td>C880</td>
<td>1145.78</td>
<td>1331.82</td>
<td>16.2%</td>
</tr>
<tr>
<td>C1355</td>
<td>1447.36</td>
<td>1536.57</td>
<td>6.1%</td>
</tr>
<tr>
<td>C1908</td>
<td>1380.33</td>
<td>1425.31</td>
<td>3.3%</td>
</tr>
<tr>
<td>C2670</td>
<td>1924.59</td>
<td>1967.85</td>
<td>2.2%</td>
</tr>
<tr>
<td>C3540</td>
<td>3545.70</td>
<td>4174.23</td>
<td>17.7%</td>
</tr>
<tr>
<td>C5315</td>
<td>4211.55</td>
<td>4161.46</td>
<td>-1.2%</td>
</tr>
<tr>
<td>C6288</td>
<td>8353.50</td>
<td>9404.11</td>
<td>12.5%</td>
</tr>
<tr>
<td>C7552</td>
<td>6389.44</td>
<td>6424.59</td>
<td>0.6%</td>
</tr>
<tr>
<td>average</td>
<td></td>
<td></td>
<td>7.39%</td>
</tr>
</tbody>
</table>
Experimental results (2/3)

<table>
<thead>
<tr>
<th></th>
<th>Total net</th>
<th>Receiver peak</th>
<th>Xtalk_Ratio(%)</th>
<th>Improvement(%)</th>
<th>Run_time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIS</td>
<td>Ours</td>
<td>SIS</td>
<td>Ours</td>
<td>SIS</td>
</tr>
<tr>
<td>C432</td>
<td>218</td>
<td>229</td>
<td>37</td>
<td>27</td>
<td>16.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>C499</td>
<td>416</td>
<td>485</td>
<td>93</td>
<td>72</td>
<td>22.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>C880</td>
<td>359</td>
<td>431</td>
<td>71</td>
<td>62</td>
<td>19.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>C1355</td>
<td>426</td>
<td>465</td>
<td>73</td>
<td>72</td>
<td>17.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>C1908</td>
<td>408</td>
<td>526</td>
<td>107</td>
<td>92</td>
<td>26.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>C2670</td>
<td>709</td>
<td>730</td>
<td>135</td>
<td>117</td>
<td>19.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>C3540</td>
<td>965</td>
<td>1208</td>
<td>131</td>
<td>122</td>
<td>13.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>C5315</td>
<td>1185</td>
<td>1167</td>
<td>159</td>
<td>147</td>
<td>13.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>C6288</td>
<td>2197</td>
<td>2626</td>
<td>130</td>
<td>110</td>
<td>5.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>C7552</td>
<td>1879</td>
<td>1880</td>
<td>154</td>
<td>135</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>average</td>
<td>--</td>
<td>--</td>
<td>154</td>
<td>135</td>
<td>16.26</td>
</tr>
</tbody>
</table>

2010/2/1
Experimental results (3/3)

- Summary of results
 - Crosstalk performance: 28% improvement
 - Delay: 5% worse
 - Area: 7% worse
 - Run-time: 1.4x worse, but still practical
Outline

- Introduction
- Preliminaries
- Proposed algorithm
- Experimental results
- Conclusions
Conclusions

- We propose a new method estimating the crosstalk information in the technology mapping.
- Crosstalk can be reduced in technology mapping with affordable increase in area and delay.
- From our framework, it can easily be extended to other objectives, such as power or temperature.
Thank you for your attention