Checker-Pattern and Shared Two Pixels LOFIC CMOS Image Sensors

Yoshiaki Tashiro, Shun Kawada, Shin Sakai and Shigetoshi Sugawa

Tohoku University, Sendai, Japan
Background

Lateral Overflow Integration Capacitor (LOFIC)
CMOS Image Sensor*1

- High Sensitivity
 ・・・・・200-μV/e- *2
- High Full Well Capacity
 ・・・・・237-ke- *3
- Low Dark Current
 ・・・・0.35-e-/sec·μm² *3
- Low Resolution
 ・・・・4.5×4.5-μm² pixel size *4

Pixel scaling is a very hard challenge because of the additional components switch S and Cs

Checker-Pattern LOFIC CMOS Image Sensor

Rectangle Pixel Structure: High Area Efficiency
Large Size PD: High Sensitivity
Color Filter and On-chip Micro-lens Array Diagram

Color Filter and On-chip Micro-lens Arrangement
→ no photon loss

Appropriate Signal Processing
→ Good Color Reproductivity
→ High Effective Resolution

4.2-μm
Shared Two Pixels LOFIC CMOS Image Sensor

Sharing Pixel Components: High Resolution
LOFIC Technology: High Full Well Capacity

*5S. Sakai, et al., ESSCIRC, 2009
Relation between Full Well Capacity and Pixel Pitch

- Full Well Capacity per Pixel Area [ke-/μm²]
- Pixel Pitch [μm]

LOFIC CMOS Image Sensor
- Checker-Pattern Pixel
- Shared Two Pixels

Conventional CCD and CMOS Image Sensor
Conclusion

New Two LOFIC CMOS image sensors having scaled pixels, checker pattern pixel and shared two pixels, have been developed.

These image sensors have achieved high sensitivity, high full well capacity and wide dynamic range performances, and show higher resolution performances compared to the conventional sensors in spite of using the same CMOS technology.